Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2025, Vol. 59 Issue (11): 2285-2292    DOI: 10.3785/j.issn.1008-973X.2025.11.007
    
Experimental investigation on dynamics and mixing of flexible biomass particles
Dandan XU1(),Enke JIANG1,Jun ZHU1,Yu GUO2
1. College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China
2. School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China
Download: HTML     PDF(1552KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Experimental studies were conducted to analyze dynamics and mixing behavior of the tobacco particles in a rotating drum by using fibrous tobacco particles as representatives of the biomass particles in order to understand dynamic and mixing behaviors of flexible biomass particles. Dynamic angle of repose (AoR) and Lacey index were determined by using image process method in order to respectively quantify flowability and extent of mixing. Effects of some critical parameters were analyzed. Results showed that an increase in the material fill ratio led to a reduction in both AoR and mixing rate. Augments in the particle-wall friction coefficient and rotational velocity in the considered ranges showed slight impacts on AoR, while they remarkably enhanced the mixing rate. Installation of rods on the internal surface of the drum increased AoR, and the mixing rate was maximized by installing the rods with optimal number and length.



Key wordsbiomass particle      flexible fiber      granular mixing      granular flow      rotating drum      image process     
Received: 01 October 2024      Published: 30 October 2025
CLC:  TK124  
Fund:  国家自然科学基金资助项目(12372250).
Cite this article:

Dandan XU,Enke JIANG,Jun ZHU,Yu GUO. Experimental investigation on dynamics and mixing of flexible biomass particles. Journal of ZheJiang University (Engineering Science), 2025, 59(11): 2285-2292.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2025.11.007     OR     https://www.zjujournals.com/eng/Y2025/V59/I11/2285


柔性生物质颗粒运动混合的实验研究

为了深入理解柔性生物质颗粒的运动混合行为,选取纤维状烟丝颗粒为代表,开展旋转滚筒内烟丝颗粒的运动混合的实验研究. 采用图像处理的方法,确定动态休止角(AOR)和莱西混合指数,分别量化标定颗粒运动形态和混合程度. 开展关键参数的分析,发现颗粒填充度的增加会引起动态休止角和混合速率降低. 在当前考察的参数值范围内,滚筒内壁摩擦系数和滚筒转速的增加虽然对动态休止角的影响不大,但是会引起颗粒混合速率的显著增加. 在滚筒内壁安装耙钉,会显著增大动态休止角;采用适当的耙钉数量和长度,可以实现较大的颗粒混合速率.


关键词: 生物质颗粒,  柔性纤维,  颗粒混合,  颗粒流,  旋转滚筒,  图像处理 
Fig.1 Size and shape characterization of tobacco particle
Fig.2 Schematic diagram of experimental set-up of rotating drum
Fig.3 Procedure to determine dynamic angle of repose for dynamic particle bed using image processing method
Fig.4 Procedure to determine Lacey mixing index using image processing method
Fig.5 Time evolution of dynamic angle of repose with different material fill ratio in small drum (R = 92 mm)
Fig.6 Average dynamic angle of repose varying with material fill ratio in drum of different size
Fig.7 Particle mixing process at different material fill ratio in small drum (R = 92 mm, ω = 9 r/min, μ = 1.0)
Fig.8 Effect of drum size and material fill ratio on granular mixing
Fig.9 Average dynamic angle of repose varying with particle-wall friction coefficient for drum of different size
Fig.10 Effect of particle-wall friction coefficient on granular mixing
Fig.11 Average dynamic angle of repose varying with rotational velocity for drum of different size
Fig.12 Combined effect of rotational velocity and size of drum on granular mixing rate
Fig.13 Snapshot of mixing of tobacco particles in drum with 3 rods installed on its internal surface
Fig.14 Effect of number of installed rod on granular dynamics and mixing
Fig.15 Effect of length of installed rod on granular dynamics and mixing
[1]   ZHANG J J, QU Z G, ZHANG J F, et al A three-dimensional numerical study of coupled photothermal and photoelectrical processes for plasmonic solar cells with nanoparticles[J]. Renewable Energy, 2021, 165 (1): 278- 287
[2]   ABEDINI A, BUTCHER C, CHEN Z T Numerical simulation of the influence of particle clustering on tensile behavior of particle-reinforced composites[J]. Computational Materials Science, 2013, 73: 15- 23
doi: 10.1016/j.commatsci.2013.02.021
[3]   LARIMI M M, RAMIAR A, RANJBAR A A Numerical simulation of magnetic nanoparticles targeting in a bifurcation vessel[J]. Journal of Magnetism and Magnetic Materials, 2014, 362: 58- 71
doi: 10.1016/j.jmmm.2014.03.002
[4]   van SLEEUWEN R, PANTALEEV S, EBRAHIMI M Efficient DEM modeling of solid flavor particle mixing in a rotary drum[J]. Powder Technology, 2024, 437: 119559
doi: 10.1016/j.powtec.2024.119559
[5]   SANTOS D A, DUARTE C R, BARROZO M A S Segregation phenomenon in a rotary drum: experimental study and CFD simulation[J]. Powder Technology, 2016, 294: 1- 10
doi: 10.1016/j.powtec.2016.02.015
[6]   KUMAR S, KHATOON S, YOGI J, et al Experimental investigation of segregation in a rotating drum with non-spherical particles[J]. Powder Technology, 2022, 411: 117918
doi: 10.1016/j.powtec.2022.117918
[7]   HEILBUTH R R, SOUZA G M, SANTOS D A, et al Numerical evaluation of the granular mixing behavior in a flighted rotary drum through the discrete element method[J]. Powder Technology, 2022, 400: 117251
doi: 10.1016/j.powtec.2022.117251
[8]   孙撼林, 方海峰, 刘锐, 等 工装篮烘干筒内硅料颗粒混合过程的数值模拟[J]. 中国粉体技术, 2023, 29 (4): 22- 35
SUN Hanlin, FANG Haifeng, LIU Rui, et al Numerical simulation of mixing process of silicon particles in drying cylinder of tooling basket[J]. China Powder Science and Technology, 2023, 29 (4): 22- 35
[9]   CHOU S H, LIAO C C, HSIAU S S An experimental study on the effect of liquid content and viscosity on particle segregation in a rotating drum[J]. Powder Technology, 2010, 201 (3): 266- 272
doi: 10.1016/j.powtec.2010.04.009
[10]   PORTEIRO J, COLLAZO J, PATINO D, et al Numerical modeling of a biomass pellet domestic boiler[J]. Energy and Fuels, 2009, 23 (2): 1067- 1075
doi: 10.1021/ef8008458
[11]   GU C, YUAN Z, SUM S, et al Simulation investigation of drying characteristics of wet filamentous biomass particles in a rotary kiln[J]. Fuel Processing Technology, 2018, 178: 344- 352
doi: 10.1016/j.fuproc.2018.07.001
[12]   GU C, YAO S, PAN D, et al Experimental research on the drying characteristics of flexible fibrous biomass fuels in the baffled-rotary cylinder[J]. Energy and Fuels, 2019, 33 (3): 2285- 2292
doi: 10.1021/acs.energyfuels.8b04241
[13]   YANG Q, CHEN J, ZHOU X, et al Modeling of inter-tablet coating uniformity of electrostatic dry powder coating by discrete element method[J]. Powder Technology, 2022, 411: 117929
doi: 10.1016/j.powtec.2022.117929
[14]   XIE C, YOU Y, MA H, et al Mechanism of inter-tablet coating variability: investigation about the motion behavior of ellipsoidal tablets in a pan coater[J]. Powder Technology, 2021, 379: 345- 361
doi: 10.1016/j.powtec.2020.10.088
[15]   HAN Jiawei, SHEN Kai, GUO Yu, et al Discrete element simulations of flexible ribbon-like particles[J]. Powder Technology, 2023, 429: 118950
doi: 10.1016/j.powtec.2023.118950
[16]   沈凯, 樊虎, 韩乐园, 等 基于图像识别的叶丝形态表征及其数值模拟[J]. 中国烟草学报, 2024, 30 (4): 55- 66
SHEN Kai, FAN Hu, HAN Leyuan, et al Characterization of cut tobacco morphology based on image recognition and its application in numerical simulations[J]. Acta Tabacaria Sinica, 2024, 30 (4): 55- 66
[17]   LIU Peiyuan, YANG Runyu, YU Aibing DEM study of the transverse mixing of wet particles in rotating drums[J]. Chemical Engineering Science, 2013, 86: 99- 107
doi: 10.1016/j.ces.2012.06.015
[18]   BARROZOL M A, SANORI D J, FREIRE J T, et al Discrimination of equilibrium moisture equations for soybean using nonlinearity measures[J]. Drying Technology, 1996, 14 (7/8): 1779- 1794
[1] Zihao LIU,Jiaxin ZHANG,Feng XUE,Jun ZHANG,Weijie CHEN,Yebo LU. Surface defect detection method of precision pipe fittings based on improved YOLO-v8[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(7): 1514-1522.
[2] Minhang YANG,Haisong XU,Yiming HUANG,Zhengnan YE,Yuntao ZHANG,Bin HU. Illumination-aware color consistency algorithm for cross-camera applications[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(3): 557-565.
[3] Zhichao CHEN,Jie YANG,Fan LI,Zhicheng FENG. Review on deep learning-based key algorithm for train running environment perception[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(1): 1-17.
[4] Xiao-qiang ZHAO,Ze WANG,Zhao-yang SONG,Hong-mei JIANG. Image super-resolution reconstruction based on dynamic attention network[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(8): 1487-1494.
[5] Hao-ran GUO,Ji-chang GUO,Yu-dong WANG. Lightweight semantic segmentation network for underwater image[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(7): 1278-1286.
[6] Fan XIONG,Tian CHEN,Bai-cheng BIAN,Jun LIU. Chip surface character recognition based on convolutional recurrent neural network[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(5): 948-956.
[7] Zheng-shu ZHAN,Yu ZHAO,Teng LIANG,Zhun LIU,Wei WANG. Discrete element simulation of granular chute flows within centrifugal field[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(6): 1232-1240.
[8] Pei-zhi WEN,Jun-mou CHEN,Yan-nan XIAO,Ya-yuan WEN,Wen-ming HUANG. Underwater image enhancement algorithm based on GAN and multi-level wavelet CNN[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(2): 213-224.
[9] Hao JIANG,Hai-song XU. Histogram based tone mapping algorithm using image segmentation and fusion[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(11): 2224-2231.
[10] Tong CHEN,Jian-feng GUO,Xin-zhong HAN,Xue-li XIE,Jian-xiang XI. Visible and infrared image matching method based on generative adversarial model[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(1): 63-74.
[11] Zhu-ye XU,Xiao-qiang ZHAO,Hong-mei JIANG. 3D model fitting method based on point distribution model[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(12): 2373-2381.
[12] Rui-huan CAI,Yong-zhi ZHAO. Effect of screw structure on granular mixing in a double-screw conical mixer[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(11): 2067-2075.
[13] Ying LI,Fang CHENG,Zhi-lin ZHAO. Machining precision online measurement of large span pin hole using structured light[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 557-565.
[14] Wan-liang WANG,Xiao-han YANG,Yan-wei ZHAO,Nan GAO,Chuang LV,Zhao-juan ZHANG. Image enhancement algorithm with convolutional auto-encoder network[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1728-1740.
[15] ZHOU Hao, LI Ning, LI Yuan, ZHAO Meng-hao, CEN Ke-fa. Experimental study on ethanol spray combustion characteristics under oxy-fuel conditions[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(9): 1821-1827.