Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2025, Vol. 59 Issue (11): 2269-2276    DOI: 10.3785/j.issn.1008-973X.2025.11.005
    
Intermuscular coupling and collaboration of upper limb in overhead work
Yanpu YANG(),Wenhao MENG,Zhihong WU,Jialing LIU,Yueming ZHUO
Key Laboratory of Road Construction Technology and Equipment of MOE, Chang’an University, Xi’an 710064, China
Download: HTML     PDF(2334KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

An overhead work experiment was designed based on the maintenance of a certain complex piece of equipment in order to explore the intermuscular coupling and synergy characteristics of upper limb muscles during overhead work at different heights. This experiment aimed to inform the design of assistive devices and task improvements. Surface electromyography (sEMG) data were collected from eight upper limb channels in 12 participants as they performed overhead work at three distinct heights: level with the top of the head (H1), 5 cm above the head (H2), and 10 cm above the head (H3). Generalized partial directed coherence (GPDC) was used to calculate the coherence values among the eight muscles, revealing the global coupling characteristics at different heights. Non-negative matrix factorization (NMF) was applied to analyze muscle synergy patterns and the synergistic muscles associated with each task height. Complex network analysis was employed to construct muscle functional networks at different heights, enabling a quantitative analysis of network connectivity characteristics. Results indicated that the trapezius and deltoid muscles exhibited the highest coupling with other muscles across the three heights. The optimal number of synergy patterns was two, with synergy pattern 1 primarily dominating the task and synergy pattern 2 serving as a supplementary role. Height H1 demonstrated better coupling and synergy of upper limb muscles compared to H2 and H3.



Key wordsoverhead work      intermuscular coordination      intermuscular coupling      generalized partial directed coherence (GPDC)      nonnegative matrix factorization (NMF)      surface electromyography      complex network     
Received: 05 November 2024      Published: 30 October 2025
CLC:  TP 391  
Fund:  基础加强计划技术领域基金资助项目(2021-JCJQ-JJ-1018);长安大学中央高校基金资助项目(300102253107).
Cite this article:

Yanpu YANG,Wenhao MENG,Zhihong WU,Jialing LIU,Yueming ZHUO. Intermuscular coupling and collaboration of upper limb in overhead work. Journal of ZheJiang University (Engineering Science), 2025, 59(11): 2269-2276.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2025.11.005     OR     https://www.zjujournals.com/eng/Y2025/V59/I11/2269


过头作业上肢肌间耦合及协同

为了探究不同高度下过头作业上肢肌肉间的耦合和协同特性,指导辅助装置设计与作业改善,结合某复杂装备的维修设计过头作业实验,采集12名被试者在不同过头作业高度下(超过头顶0 cm(H1)、5 cm(H2)、10 cm(H3))的上肢8通道表面肌电(SEMG)信号. 利用广义偏定向相干性(GPDC)计算8块肌肉之间的相干性值,得到不同高度下8块肌肉的全局耦合特性. 通过非负矩阵分解(NMF),解析不同高度下过头作业的肌肉协同模式及协同肌肉. 利用复杂网络建立不同高度下的肌肉功能网络,定量分析肌肉功能网络的连接特性. 研究结果表明,3种不同高度下斜方肌和三角肌与其他肌肉的耦合度最高. 最佳协同模式数均为2,且由协同模式1为主导,协同模式2为辅助完成过头作业. 相较于H2H3H1高度的上肢肌间耦合及协同性更好.


关键词: 过头作业,  肌间协同,  肌间耦合,  广义偏定向相干性(GPDC),  非负矩阵分解(NMF),  表面肌电,  复杂网络 
Fig.1 Distribution of upper limb muscles in sEMG acquisition experiment
Fig.2 Ratio of PDC area to total area of each upper limb muscle at H3 height
Fig.3 VAF value at different height
Fig.4 Muscle activation coefficient of each synergistic mode at different height after NMF decomposition
Fig.5 Basis matrix of various synergy mode at different height after NMF decomposition
Fig.6 Intermuscular synergy at different height
高度模式Kf
PMBITRIDEBRFCRTRALA
H1w10.0640.0800.2071.0000.0920.0710.8820.225
H1w20.5140.1670.1391.0000.1170.3000.3400.548
H2w10.0340.0850.1640.9760.0500.0261.0000.115
H2w20.5710.5540.2821.0000.2340.2010.9770.654
H3w10.0590.1730.2320.5050.1240.1281.0000.133
H3w21.0000.2370.0680.5300.1060.2450.7210.648
Tab.1 Formalization results of total information output of upper limb muscle
Fig.7 Muscle functional network at different height
高度DCL
H14.5000.8951.000
H23.2500.8331.012
H34.2500.8081.105
Tab.8 Network parameter at different height
[1]   杨延璞, 吕苓玮, 韩钟剑, 等 过头作业上肢负荷评估研究综述[J]. 计算机集成制造系统, 2024, 30 (11): 3771- 3785
YANG Yanpu, LV Lingwei, HAN Zhongjian, et al Research review of workload assessment for the upper extremities in overhead work[J]. Computer Integrated Manufacturing Systems, 2024, 30 (11): 3771- 3785
[2]   王忠旭, 李刚, 秦汝莉, 等 汽车装配工人工作相关肌肉骨骼损伤危险暴露水平及发病调查研究[J]. 环境与职业医学, 2012, 29 (1): 6- 8
WANG Zhongxu, LI Gang, QIN Ruli, et al Research on exposure risk level and occurrence of musculoskeletal disorders among automobile assembly workers[J]. Journal of Environmental and Occupational Medicine, 2012, 29 (1): 6- 8
[3]   BJELLE A, HAGBERG M, MICHAELSON G Occupational and individual factors in acute shoulder-neck disorders among industrial workers[J]. British Journal of Industrial Medicine, 1981, 38 (4): 356- 363
[4]   RENBERG J, WIGGEN Ø N, TVETENE P Ø S, et al Effect of working position and cold environment on muscle activation level and fatigue in the upper limb during manual work tasks[J]. International Journal of Industrial Ergonomics, 2020, 80: 103035
doi: 10.1016/j.ergon.2020.103035
[5]   GAROSI E, MAZLOUMI A, JAFARI A H, et al Design and ergonomic assessment of a passive head/neck supporting exoskeleton for overhead work use[J]. Applied Ergonomics, 2022, 101: 103699
doi: 10.1016/j.apergo.2022.103699
[6]   DICKERSON C R, MCDONALD A C, CHOPP-HURLEY J N. Between two rocks and in a hard place: reflecting on the biomechanical basis of shoulder occupational musculoskeletal disorders [J]. Human Factors: The Journal of the Human Factors and Ergonomics Society, 2020, 65(5): 001872081989619.
[7]   MOTABAR H, NIMBARTE A D The effect of task rotation on activation and fatigue response of rotator cuff muscles during overhead work[J]. Applied Ergonomics, 2021, 97: 103461
doi: 10.1016/j.apergo.2021.103461
[8]   DICKERSON C R, BROOKHAM R L, CHOPP J N The working shoulder: assessing demands, identifying risks, and promoting healthy occupational performance[J]. Physical Therapy Reviews, 2011, 16 (5): 310- 320
doi: 10.1179/1743288X11Y.0000000032
[9]   RENDA E, LAMANUZZI S, MASO F D, et al The effects of hand dominance, fatigue, and sex on muscle activation during a repetitive overhead fatiguing task[J]. Human Movement Science, 2023, 92: 103149
doi: 10.1016/j.humov.2023.103149
[10]   YANG Yanpu, LYU Lingwei, HAN Zhongjian, et al Ergonomics assessment of the overhead maintenance of vehicle-mounted radar antenna using digital human modelling[J]. Advanced Design Research, 2023, 1 (2): 63- 70
doi: 10.1016/j.ijadr.2023.09.001
[11]   田保珍, 范沁红 汽车底盘维修中单手上举操作对肌肉疲劳的影响研究[J]. 中国工程机械学报, 2022, 20 (3): 221- 225
TIAN Baozhen, FAN Qinhong Research on the influence of single hand lifting operation on muscle fatigue in automobile chassis maintenance[J]. Chinese Journal of Construction Machinery, 2022, 20 (3): 221- 225
doi: 10.3969/j.issn.1672-5581.2022.3.zggcjxxb202203007
[12]   ALABDULKARIM S, KIM S, NUSSBAUM M A Effects of exoskeleton design and precision requirements on physical demands and quality in a simulated overhead drilling task[J]. Applied Ergonomics, 2019, 80: 136- 145
doi: 10.1016/j.apergo.2019.05.014
[13]   MAURICE P, ČAMERNIK J, GORJAN D, et al Objective and subjective effects of a passive exoskeleton on overhead work[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28 (1): 152- 164
doi: 10.1109/TNSRE.2019.2945368
[14]   赵川, 杨文鑫, 赵晓一 设备、姿势对手过头作业肌肉疲劳的影响研究[J]. 人类工效学, 2024, 30 (3): 12- 17
ZHAO Chuan, YANG Wenxin, ZHAO Xiaoyi Research on the effects of equipment and posture on muscle fatigue in overhead tasks[J]. Human Factors and Ergonomics, 2024, 30 (3): 12- 17
[15]   D’AVELLA A, PORTONE A, FERNANDEZ L, et al Control of fast reaching movements by muscle synergy combination[J]. The Journal of Neuroscience, 2006, 26 (30): 7791- 7810
doi: 10.1523/JNEUROSCI.0830-06.2006
[16]   D'AVELLA A, SALTIEL P, BIZZI E Combinations of muscle synergies in the construction of a natural motor behavior[J]. Nature Neuroscience, 2003, 6 (3): 300- 308
doi: 10.1038/nn1010
[17]   SEO G, PARK J H, PARK H S, et al Developing new intermuscular coordination patterns through an electromyographic signal-guided training in the upper extremity[J]. Journal of NeuroEngineering and Rehabilitation, 2023, 20: 112
doi: 10.1186/s12984-023-01236-2
[18]   CHEN X, XIE P, ZHANG Y, et al Abnormal functional corticomuscular coupling after stroke[J]. NeuroImage: Clinical, 2018, 19: 147- 159
doi: 10.1016/j.nicl.2018.04.004
[19]   KERKMAN J N, BEKIUS A, BOONSTRA T W, et al Muscle synergies and coherence networks reflect different modes of coordination during walking[J]. Frontiers in Physiology, 2020, 11: 751
doi: 10.3389/fphys.2020.00751
[20]   王洪安, 佘青山, 马玉良, 等 卒中后上肢肌间协同耦合分析研究[J]. 传感技术学报, 2020, 33 (10): 1391- 1398
WANG Hongan, SHE Qingshan, MA Yuliang, et al Study on limb intermuscular synergy and coupling after stroke[J]. Chinese Journal of Sensors and Actuators, 2020, 33 (10): 1391- 1398
doi: 10.3969/j.issn.1004-1699.2020.10.003
[21]   郑行, 佘青山, 高云园, 等 基于传递熵与广义偏定向相干性的肌间耦合分析[J]. 航天医学与医学工程, 2018, 31 (5): 538- 544
ZHENG Xing, SHE Qingshan, GAO Yunyuan, et al Intermuscular coupling analysis based on transfer entropy and generalized partial directed coherence[J]. Space Medicine and Medical Engineering, 2018, 31 (5): 538- 544
[22]   谢平, 李欣欣, 杨春华, 等 基于表面肌电非负矩阵分解与一致性的肌间协同-耦合关系研究[J]. 中国生物医学工程学报, 2017, 36 (2): 150- 157
XIE Ping, LI Xinxin, YANG Chunhua, et al Research on the intermuscular synergy and coupling analysis based on surface EMG nonnegative matrix factorization-coherence[J]. Chinese Journal of Biomedical Engineering, 2017, 36 (2): 150- 157
doi: 10.3969/j.issn.0258-8021.2017.02.004
[23]   杜义浩, 齐文靖, 邹策, 等 基于变分模态分解-相干分析的肌间耦合特性[J]. 物理学报, 2017, 66 (6): 345- 354
DU Yihao, QI Wenjing, ZOU Ce, et al Intermuscular coupling characteristics based on variational mode decomposition-coherence[J]. Acta Physica Sinica, 2017, 66 (6): 345- 354
doi: 10.7498/aps.66.068701
[24]   BACCALA L A, SAMESHIMA K, TAKAHASHI D Y. Generalized partial directed coherence [C]//15th International Conference on Digital Signal Processing. Cardiff: IEEE, 2007: 163-166.
[25]   BACCALA L A, SAMESHIMA K Partial directed coherence: a new concept in neural structure determination[J]. Biological Cybernetics, 2001, 84 (6): 463- 474
doi: 10.1007/PL00007990
[26]   LEE D D, SEUNG H S Learning the parts of objects by non-negative matrix factorization[J]. Nature, 1999, 401 (6755): 788- 791
doi: 10.1038/44565
[27]   MARCHIS C D, SEVERINI G, CASTRONOVO A M, et al Intermuscular coherence contributions in synergistic muscles during pedaling[J]. Experimental Brain Research, 2015, 233 (6): 1907- 1919
doi: 10.1007/s00221-015-4262-4
[28]   WATTS D J, STROGATZ S H. Collective dynamics of small world networks [J]. Nature, 1998, 393(6684): 440 442.
[29]   BARABASI A L, ALBERT R Emergence of scaling in random networks[J]. Science, 1999, 286 (5439): 509- 512
doi: 10.1126/science.286.5439.509
[30]   陈玲玲, 李珊珊, 刘作军, 等 基于表面肌电的下肢肌肉功能网络构建及其应用研究[J]. 自动化学报, 2017, 43 (3): 407- 417
CHEN Lingling, LI Shanshan, LIU Zuojun, et al Construction of lower limbs functional muscle network and its application based on surface EMG[J]. Acta Automatica Sinica, 2017, 43 (3): 407- 417
[1] Fei MA,Xiaolin WEI,Qipeng SUN,Qing LIU,Huiyan GOU. Robustness of multimodal passenger transport network in urban agglomeration considering complementary effect[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(2): 388-398.
[2] Diao ZHOU,Xin XIONG,Jianhua ZHOU,Jing ZONG,Qi ZHANG. Convolutional neural network combined with subdomain adaptation for low sampling rate EMG-based gesture recognition[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(10): 2011-2019.
[3] Shu-tao ZHANG,Zhi-qiang YANG,Shi-jie WANG,Shi-feng LIU,Fan ZHANG,Ai-min ZHOU. Clustering model of user community subgroup’s demand based on complex networks[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(9): 1843-1855.
[4] Yan-pu YANG,Zheng GONG,Chen-xin LAN,Zi-jing LEI,Xin-rui WANG. Construction of industrial design decision-making network and its dynamic evolution simulation[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(12): 2298-2306.
[5] You-kang DUAN,Xiao-gang CHEN,Jian GUI,Bin MA,Shun-fen LI,Zhi-tang SONG. Continuous kinematics prediction of lower limbs based on phase division[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 89-95.
[6] Lin YANG,Jia-jun WANG. Risk transfer process in urban comprehensive corridor PPP project based on complex network model[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1666-1676.
[7] Peng ZHU,Jian-bo YU,Xiao-yun ZHENG,Yong-song WANG,Xi-wu SUN. Variation propagation network-based modeling and error tracing in mechanical assembling process[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(8): 1582-1593.
[8] DU Ming-yu, BAO Guan-jun, YANG Qing-hua, WANG Zhi-heng, ZHANG Li-bin. Novel method in pattern recognition of hand actions based on improved support vector machine[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(7): 1239-1246.
[9] ZHAO Cui-lian, XU Hao-yu, LUO Lin-hui, WANG Kai. SEMG activity detection of hemiplegic patients in different stages using entropy algorithms[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(4): 798-805.
[10] HU Gang, XU Xiang Xiang, GUO Xiu-cheng. Importance calculation of complex network nodes based on interpretive structural modeling method[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(10): 1989-1997.
[11] DAI Cai-yan, CHEN Ling, LI Bin, CHEN Bo-lun. Sampling-based link prediction in complex networks[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(3): 554-561.
[12] LIU Lei, YANG Peng, LIU Zuo-jun. Locomotion-Mode recognition using multiple kernel relevance vector machine[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(3): 562-571.
[13] YANG Zhong-liang, TANG Zhi-chuan, CHEN Yu-miao, GAO Zeng-gui. Force-sEMG relations recognition models of forearm exoskeleton for bilateral training[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(12): 2152-2161.
[14] XUAN Qi, WU Tie-jun. Network model and heuristic scheduling rule designing method for
complex open shop problems
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(6): 961-968.
[15] XUAN Qi, WU Tie-jun. Open shop complex scheduling network model and
characteristic analysis
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(4): 589-595.