|
|
|
| Desensitization design for parallel robots under multi-source hybrid uncertainty |
Mingzhe TAO1,2( ),Jinghua XU1,*( ),Shuyou ZHANG1,Jianrong TAN1 |
1. Design Engineering Institute, Zhejiang University, Hangzhou 310058, China 2. State Key Laboratory of Transvascular Implantation Devices and TRIDI, Hangzhou 310009, China |
|
|
|
Abstract A desensitization design method for parallel robots considering multi-source uncertain hybrid perturbation was proposed aiming at the problem of optimal design of high-performance parallel robots. A probabilistic error model was established by using the first-order perturbation method for error modeling. The optimal dimension design parameters were obtained by using multi-target subregion meta-heuristic iterations after analyzing the high-value targets corresponding to the working subregion. A performance sensitivity index was constructed to optimally allocate the design tolerances. The sensitivity of maintenance to parameters was calculated by establishing an in-service accuracy performance sensitivity model, and a low-sensitivity preventive maintenance strategy was obtained. An additive manufacturing parallel robot was used as an example for validation. Results show that the static performance and dynamic in-service accuracy maintenance can be effectively improved via desensitization design.
|
|
Received: 25 October 2024
Published: 30 October 2025
|
|
|
| Fund: 国家重点研发计划资助项目(2022YFB3303303);国家科技重大专项资助项目(2024ZD0714401) |
|
Corresponding Authors:
Jinghua XU
E-mail: 12225017@zju.edu.cn;xujh@zju.edu.cn
|
考虑多源混合不确定性的并联机器人降敏设计
针对高性能并联机器人优化设计的难题,提出考虑多源不确定混合扰动的并联机器人降敏设计方法. 利用一阶摄动方法进行误差建模,建立概率误差模型. 在分析工作子区域所对应的高价值靶目标后,采用多靶分域元启发式迭代获取最优的尺寸设计参数. 构建性能敏感度指标,对机器人设计公差进行优化分配. 通过建立在役精度性能敏感性模型,计算获取维保效果对于预防性维保策略参数的敏感性,制定得到低敏预防性维保策略. 以增材制造并联机器人为例进行分析,结果表明,利用降敏设计方法,能够有效地提高静态设计性能及动态在役精度保持能力.
关键词:
并联机器人,
多源混合不确定性,
降敏设计,
多靶分域迭代,
公差优化分配,
预防性维保
|
|
| [1] |
ADEL A Future of industry 5.0 in society: human-centric solutions, challenges and prospective research areas[J]. Journal of Cloud Computing, 2022, 11 (1): 40
doi: 10.1186/s13677-022-00314-5
|
|
|
| [2] |
HASSOUN A, PRIETO M A, CARPENA M, et al Exploring the role of green and Industry 4.0 technologies in achieving sustainable development goals in food sectors[J]. Food Research International, 2022, 162: 112068
doi: 10.1016/j.foodres.2022.112068
|
|
|
| [3] |
DUPONT P E, SIMAAN N, CHOSET H, et al Continuum robots for medical interventions[J]. Proceedings of the IEEE, 2022, 110 (7): 847- 870
doi: 10.1109/JPROC.2022.3141338
|
|
|
| [4] |
ANH T T M, VAN HOP N Matheuristics for mixed-model assembly line balancing problem with fuzzy stochastic processing time[J]. Applied Soft Computing, 2024, 160: 111694
doi: 10.1016/j.asoc.2024.111694
|
|
|
| [5] |
JADHAV A, ZOPE S, MALAGI R, et al Design and development of a novel tunable electrorheological fluid (ERF) damper-foundation to attenuate residual vibrations in machine tools[J]. FME Transactions, 2023, 51 (1): 1- 13
doi: 10.5937/fme2301001J
|
|
|
| [6] |
BAE W, KIM J, CHO S, et al Suppression of thermal deformation of machine tool spindle using TiC-Fe composite[J]. Journal of Mechanical Science and Technology, 2022, 36 (5): 2511- 2520
doi: 10.1007/s12206-022-0433-y
|
|
|
| [7] |
GHAFOORI M, KHALAJI K A Modeling and experimental analysis of a multi-rod parallel continuum robot using the Cosserat theory[J]. Robotics and Autonomous Systems, 2020, 134: 103650
doi: 10.1016/j.robot.2020.103650
|
|
|
| [8] |
NIARITSIRY T F, FAZENDA N, CLAVEL R. Simulation analysis of the sources of inaccuracy of a parallel manipulator [C]//IEEE International Conference on Robotics, Intelligent Systems and Signal Processing. Changsha: IEEE, 2003: 266-271.
|
|
|
| [9] |
MCDONALD E, BEITES S, ARSENAULT M. CDPR studio: a parametric design tool for simulating cable-suspended parallel robots [M]. Singapore: Springer, 2022: 344-359.
|
|
|
| [10] |
ZACCARIA F, IDA E, BRIOT S, et al Workspace computation of planar continuum parallel robots[J]. IEEE Robotics and Automation Letters, 2022, 7 (2): 2700- 2707
doi: 10.1109/LRA.2022.3143285
|
|
|
| [11] |
KHODAYGAN S A framework for tolerance design considering systematic and random uncertainties due to operating conditions[J]. Assembly Automation, 2019, 39 (5): 854- 871
doi: 10.1108/AA-10-2018-0160
|
|
|
| [12] |
FAZLOLLAHTABAR H Triple state reliability measurement for a complex autonomous robot system based on extended triangular distribution[J]. Measurement, 2019, 139: 122- 126
doi: 10.1016/j.measurement.2019.02.016
|
|
|
| [13] |
SAKAI H, AMASAKA K The robot reliability design and improvement method and the advanced Toyota production system[J]. Industrial Robot: An International Journal, 2007, 34 (4): 310- 316
doi: 10.1108/01439910710749636
|
|
|
| [14] |
FAZLOLLAHTABAR H, NIAKI S T A Cold standby renewal process integrated with environmental factor effects for reliability evaluation of multiple autonomous robot system[J]. International Journal of Quality and Reliability Management, 2018, 35 (10): 2450- 2464
|
|
|
| [15] |
XU J, TAO M, GAO M, et al Super-resolution 3D reconstruction from low-dose biomedical images based on expertized multi-layer refining[J]. Expert Systems with Applications, 2025, 281: 127474
doi: 10.1016/j.eswa.2025.127474
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|