Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
Computer Technology, Information Engineering     
Visual trajectory planning for mobile robots based on hybrid artificial potential field
DING Xia qing, DU Zhuo yang, LU Yi qing, LIU Shan
College of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China
Download:   PDF(1704KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A visual trajectory planning method was proposed based on hybrid artificial potential field for a nonholonomic mobile robot equipped with a monocular camera in consideration of field-of-view (FOV) constraints. A hybrid model was designed based on the concept of conventional artificial potential field. The model consisted of two parts. One part only affects the angular velocity and involves the terms for target deflection and field of view constraints, and the other part affects both the linear velocity and the angular velocity. The potential field for field of view constraints was defined based on the feature point coordinates in the image space. The potential fields for target deflection and the relative pose were calculated based on the scaled three-dimensional reconstruction results obtained from the decomposition of homography. The robot can be regulated to the desired pose with the targets kept in the field of view under the hybrid artificial potential field. Simulation results were provided in some representative circumstances to show the effectiveness of the proposed method.



Published: 23 July 2016
CLC:  TP 242  
Cite this article:

DING Xia qing, DU Zhuo yang, LU Yi qing, LIU Shan. Visual trajectory planning for mobile robots based on hybrid artificial potential field. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(7): 1298-1306.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2016.07.011     OR     http://www.zjujournals.com/eng/Y2016/V50/I7/1298


基于混合势场的移动机器人视觉轨迹规划

针对载有单目相机的非完整移动机器人,提出基于混合人工势场的能够满足非完整约束的路径规划方法,能够解决移动机器人运行过程中的视野约束问题.在传统人工势场的基础上,提出混合人工势场的概念,势场中一部分是只对角速度起作用的目标点偏转势场和视野约束排斥势场,另一部分是同时影响线速度和角速度的目标位姿吸引势场;其中视野约束排斥势场定义在图像空间内;目标位姿吸引势场和目标点偏转势场定义在笛卡尔空间,利用单应性矩阵三维重建的结果构造势场函数.在混合人工势场的控制下,机器人能够在同时满足视野约束和无侧滑约束的条件下平滑地移动到目标位姿.仿真结果证明了该方法的有效性.

[1] 贾丙西,刘山,张凯祥,等. 机器人视觉伺服研究进展:视觉系统与控制策略[J]. 自动化学报,2015,41(5): 861-873.
JIA Bingxi, LIU Shan, ZHANG Kaixiang, et al. Survey on robot visual servo control: vision system and control strategies [J]. Acta Automatica Sinica, 2015, 41(5): 861-873.
[2] GONZALO L N, GANS N R, SOURABH B, et al . Homographybased control scheme for mobile robots with nonholonomic and fieldofview constraints [J]. IEEE Transactions on Systems Man and Cybernetics Part B Cybernetics, 2010, 40(4): 1115-1127.
[3] CAO Z C, YIN L J, FU Y L, et al. Predictive control for visual servo stabilization of nonholonomic mobile robots [J]. Acta Automatica Sinica, 2013, 39(8): 1238-1245.
[4] SCHRAMM F, MOREL G. Ensuring visibility in calibrationfree path planning for imagebased vicsual servoing [J]. IEEE Transactions on Robotics, 2006, 22(4): 848-854.
[5] CHESI G, PRATTICHIZZO D, VICINO A. Straight line pathplanning in visual servoing [J]. Journal of Dynamic Systems Measurement and Control Transactions of the ASME, 2007, 129(4): 541-543.
[6] CHESI G. Visual servoing path planning via homogeneous forms and LMI optimizations [J]. IEEE Transactions on Robotics, 2009, 25(2): 281-291.
[7] CHESI G, HUNG Y S. Global pathplanning for constrained and optimal visual servoing [J]. IEEE Transactions on Robotics, 2007, 23(5): 1050-1060.
[8] BORENSTEIN J, KOREN Y. Realtime obstacle avoidance for fast mobile robots [J]. IEEE Transactions on Systems, Man, and Cybernetics, 1989, 19(5): 1179-1187.
[9] 朱毅,张涛,宋靖雁. 非完整移动机器人的人工势场法路径规划[J],控制理论与应用,2010,27(2): 152-158.
ZHU Yi, ZHANG Tao, SONG Jingyan. Path planning for nonholonomic mobile robots using artificial potential field method [J]. Control Theory and Applications,2010, 27(2): 152-158.
[10] FANG Yongchun, ZHANG Xuebo. Adaptive active visual servoing of nonholonomic mobile robots [J]. IEEE Transcations on Industrial Electronics, 2012, 59(1): 486-497.
[11] 李宝全,方勇纯,张雪波.基于2D 三焦点张量的移动机器人视觉伺服镇定控制[J],自动化学报,2014,40(12): 2706-2715.
LI Baoquan, FANG Yongchun, ZHANG Xuebo. 2D trifocal tensor based visual servo regulation of nonholonomic mobilerobots [J].Acta Automatica Sinica, 2014,40(12): 2706-2715.
[12] MEZOUAR Y, CHAUMETTE F. Path planning for robust imagebased control [J]. IEEE Transactions on Robotics and Automation, 2002, 18(4): 534-549.
[13] ZHANG Xuebo, FANG Yongchun, MA Bojun, et al. A fast homography decomposition technique for visual servo of mobile robots [C]∥ Proceedings of the 27th Chinese Control Conference. Beijing: Beihang University Press, 2008: 404-409.
[14] CHAUMETTE F, HUTCHINSON S. Visual servo control. I. basic approaches [J]. IEEE Robotics and Automation Magazine, 2006, 13(4): 82-90.

[1] GAO De-dong, LI Qiang, LEI Yong, XU Fei, BAI Hui-quan. Geometric approximation approach based research on kinematics of bevel-tip flexible needles[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(4): 706-713.
[2] TANG Zhi-dong, YUN Chao. Quick action coupling technology in full-automatic quick coupling device: a review[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(3): 461-470.
[3] XU Xian jin, WU Long hui, YANG Xiao jun, TANG Liang, YANG Yong feng. Magnetic driving method of inspection robot for HVDC transmission lines[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(10): 1937-1945.
[4] ZHANG Yong tao, SONG Zhi wei, WANG Yi, NIAN Shan po. Robot position and rotation calibration method based on precision of spatial mesh[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(10): 1980-1986.
[5] JIA Song min, LU Ying bin, WANG Li jia, LI Xiu zhi, XU Tao. Mobile robot human tracking using hierarchical features[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(9): 1677-1683.
[6] ZHU Yu shi, YANG Can jun, WU Shi jun, XU Xiao le, ZHOU Pu zhe, SHAN Xin. Steering performance of underwater glider in water column monitoring[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(9): 1637-1645.
[7] LIU Ya nan, NI He peng, ZHANG Cheng rui WANG Yun fei; SUN Hao chun. PC-based open control platform design of integration of machine vision and motion control[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(7): 1381-1386.
[8] ZHANG A long, ZHANG Ming, QIAO Ming jie, ZHU Wei dong, MEI Biao. Base frame calibration of circumferential splice drilling system based on visual measurement[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(6): 1080-1087.
[9] JIANG Wen ting, GONG Xiao jin, LIU Ji lin. Incremental large scale dense semantic mapping[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(2): 385-391.
[10] HUANG Qi wei, ZHANG Ming, QU Wei wei, LU Xian gang, KE Ying lin. Posture optimization and smoothness for robot drilling[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(12): 2261-2268.
[11] LI Wei, ZHAO Zhi gang, SHI Guang tian, MENG Jia dong. Solutions of kinematics and dynamics for parallel cable driven system with multi robots[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(10): 1916-1923.
[12] MA Zi ang, XIANG Zhi yu. Calibration and 3D reconstruction with omnidirectional ranging by optic flow camera[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(9): 1651-1657.
[13] HE Xue-jun, WANG Jin, LU Guo-dong, CHEN Li.
Optimization of robot image drawing sequence based on ant colony algorithm
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(6): 1139-1145.
[14] YUAN Kang-zheng, ZHU Wei-dong, CHEN Lei, XUE Lei, QI Wen-gang. Approach for calibrating position of displacement sensor mounted on robot end-effector[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(5): 829-834.
[15] FU Xing-wei, WU Gong-ping, ZHOU Peng, YU Na. Energy-consumption estimation of inspection robot based on Kalman filter[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(4): 670-675.