Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
    
Pneumatic servo control system design for pressure foot of an end-effector
FANG Qiang1, ZHOU Qing-hui2, FEI Shao-hua1, MENG Xiang-lei3, BA Xiao-fu3, ZHANG Yan-ni3, KE Ying-lin1
1. State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China; 2.Shanghai Aircraft Manufacturing Limited Company, Shanghai 200436, China; 3. AVIC Xi’an Aircraft Industry(Group) Limited Company, Xi’an 710089, China
Download:   PDF(1658KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

This paper presents a cushion control method to reduce the impact force when the pressure foot presses onto the workpiece in the robotic drilling process. The design of a slide mode controller, which is based on a non-linear model of the pneumatic servo system of the pressure foot and a friction compensation model, is presented. A closed-loop motion control system of the pressure foot is implemented, in which the relative position between the pressure foot and the workpiece is used as the command and the movement between the pressure foot and the feed axis of the end-effector is used as the feedback signal. By employing the developed motion control system, fast positioning of the pressure foot onto the workpiece can be achieved with low impact force. According to the experimental results, when controlled with the proposed controller, the impact force of the pressure foot onto the workpiece can be reduced to 2.5% of that without position servo cushion control.



Published: 01 August 2014
CLC:  TP 273  
Cite this article:

FANG Qiang, ZHOU Qing-hui, FEI Shao-hua, MENG Xiang-lei, BA Xiao-fu, ZHANG Yan-ni, KE Ying-lin. Pneumatic servo control system design for pressure foot of an end-effector. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(8): 1442-1450.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2014.08.014     OR     http://www.zjujournals.com/eng/Y2014/V48/I8/1442


末端执行器压脚气动伺服控制系统设计

针对机器人自动制孔系统中末端执行器压脚作用到工件表面时产生冲击问题,提出压脚机构位置缓冲控制方法.在建立压脚机构气动非线性模型基础上,通过摩擦力模型补偿,设计一种滑模控制器,以压脚与工件之间的相对位置作为控制输入,压脚相对于执行器的位移作为控制反馈,构成压脚机构位置全闭环控制系统,实现压脚机构快速定位到工件表面,同时减小对工件表面的冲击.实验结果表明,压脚机构经过位置缓冲控制后,对工件表面冲击力减小到无缓冲控制时的2.5%.

[1] ZHANG Rui, YUAN Pei-jiang, GONG Mao-zhen. Intelligent surface-normal adjustment system and application in drilling robot [C] ∥ Intelligent System Design and Engineering Application. Piscataway: IEEE, 2012: 696-699.
[2] ZHANG Lai-xi, WANG Xing-song. Dynamic control of a flexible drilling robot end-effector [C] ∥ Chinese Control and Decision Conference. Piscataway: IEEE, 2012: 2199-2204.
[3] BI Shu-sheng, LIANG Jie. Robotic drilling system for titanium structures [J]. International Journal of Advanced Manufacturing Technology, 2011, 54(5): 767-774.
[4] LIANG Jie, BI Shu-sheng. Design and experimental study of an end effector for robotic drilling [J]. International Journal of Advanced Manufacturing Technology, 2010, 50(1): 399-407.
[5] DEVLIEG R. ONCE (One-sided cell end effector) robotic drilling system [C] ∥ SAE 2002 Automated Fastening Conference and Exposition. Warrendale: SAE, 2002012626.
[6] 邓锋.采用标准关节机器人系统对飞机货舱门结构的自动钻铆[J].航空制造技术. 2010(9): 32-35.
DENG Feng. Automated fastening of aircraft cagro door structures with a standard articulating robot system [J]. Aeronautical Manufacturing Technology, 2010(9): 32-35.
[7] 周洪.气动伺服定位技术及其应用[J].液压与气动, 1999(1): 18-21.
ZHOU Hong. Pneumatic servo positioning technology and its application [J]. Hydraulic and Pneumatic, 1999(1): 18-21.
[8] 胡剑波,庄开宇.高级变结构控制理论及应用[M].西安: 西北工业大学出版社, 2008: 25.
[9] GULATI N, BARTH E. Non-linear pressure observer design for pneumatic actuators [C] ∥ Advanced Intelligent Mechatronics. Piscataway: IEEE, 2005: 783-788.
[10] CANUDAS C, OLSSON H, ASTROM K, et al. A new model for control of systems with friction [C] ∥ Automatic Control. Piscataway: IEEE, 1995, 40(3): 419-425.
[11] BELFORTE G, MATTIAZZO G, MAURO S. Measurement of friction force in pneumatic cylinders [J]. TriboTest, 2003, 10(1): 33-48.
[12] SIVAKUMAR S, KHORRAMI F. Friction compensation via variable structure control [C] ∥ Control Applications. Piscataway: IEEE, 1997: 645-650.

[1] WANG Qing, YU Xiao guang, Qiao Ming jie, ZHAO An an, CHENG Liang, LI Jiang xiong, KE Ying lin. Rapid calibration based on SQP algorithm for coordinate frame of localizers[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(2): 319-327.
[2] ZHOU Feng, GU Lin yi, LUO Gao sheng, CHEN Zong heng. Adaptive backstepping sliding mode control for electro hydraulic proportional propulsion system[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(6): 1111-1118.
[3] JIN Xin, LIANG Jun. Multivariable offset free model predictive control in dynamic PLS framework[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(4): 750-758.
[4] JIA Chi qian, FENG Dong qin. Security assessment for industrial control systems based on fuzzy analytic hierarchy process[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(4): 759-765.
[5] FEI Shao hua, LIU Dan, QIAO Ming jie, ZHANG Ming,FANG Qiang. Synchronous control system design of dual drive end frame executed platform[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(1): 85-92.
[6] SONG Zhi qiang, ZHOU Xian zhong, LI Hua xiong. Coordinated stalking tracking for multiple unmanned ground vehicles[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(12): 2349-2354.
[7] WANG Ri jun, BAI Yue, XU Zhi jun, GONG Xun, ZHANG Xin, TIAN Yan tao. Fuzzy self adjusting tracking control based on disturbance observer for airborne platform mounted on multi rotor unmanned aerial vehicle[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(10): 2005-2012.
[8] QIU Xiang, SONG Hai yu, YU Li. Bullwhip effect control based on average dwell time method[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(10): 1909-1915.
[9] QIN Zhan-bin, CHEN Fei-fei, JIN Bo, ZHANG Lu-lu. PID auto tuning method for spool position control of electro hydraulic proportional valve[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(8): 1503-1508.
[10] SUN Wen-da, LI Ping, FANG Zhou. Time-delay uncertain robust optimal control on unmanned helicopter based on dynamic inversion[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(7): 1326-1334.
[11] DOU Ya-dong, WANG Qing, LI Jiang-xiong, KE Ying-lin. Data integration for aircraft digital assembly system[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(5): 858-865.
[12] TAO Guo-liang, ZUO He, LIU Hao. Structure design and motion control of parallel platform driven by pneumatic muscles and air cylinder[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(5): 821-828.
[13] LUO Zhong-hai, MENG Xiang-lei, BA Xiao-fu, FEI Shao-hua, FANG Qiang. Design on hybrid force position control of large aircraft components posture alignment platform[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(2): 265-274.
[14] LUO Gao-sheng, GU Lin-yi, LI Lin. Robust adaptive control of elbow based on robust observer[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(10): 1758-1766.
[15] QU Wei-wei, SHI Xin, DONG Hui-yue, FENG Pu-jia,ZHU Ling-sheng, KE Ying-lin. Simulation and test on process of percussive Impact riveting[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(8): 1411-1418.