Please wait a minute...
J4  2013, Vol. 47 Issue (5): 867-873    DOI: 10.3785/j.issn.1008-973X.2013.05.019
    
Study on depolymerization of polyethylene terephthalate by different alcohols
WANG Xing-yuan, CHEN Ji-zhong
State Key Laboratory of Chemical Engineering, Department of Chemical and Biological Engineering,
Zhejiang University, Hangzhou 310027, China   
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The depolymerization of polyethylene terephthalate (PET) by several common monohydric alcohols and binary alcohols was monitored by means of FTIR spectrometer in situ. The depolymerization reaction of PET and the reaction activities of different alcohols were investigated and compared. Infrared tracking results show that, for  different alcoholysis systems, the infrared absorption intensity of C—O, C=O groups increases with the reaction time during the depolymerization process of PET and tends to be constant after the completion of  depolymerization. The PET depolymerization degree vs. time could be characterized by the infrared absorption intensity of C—O or C=O groups vs. time. It was found that the reaction activity order is methanol > ethanol > propanol > isopropanol for monohydric alcohols and 1,2-propylene glycol > ethylene glycol >1,4-butadiene alcohol for binary alcohols. Because the alcoholysis of PET is a nucleophilic substitution reaction, the reaction activities of alcohols are related to their molecular structures. The greater nucleophilic activities of the alcohol oxygen atoms, the smaller the space resistance, the faster PET depolymerization reaction. Using binary alcohols, the influence of reaction temperature on PET depolymerization  was studied. The increase of reaction temperature can greatly speed up PET depolymerization. Using ZnAc2 with 1% weight of PET as catalyst,PET can be depolymerized completely by 1,2-propanediol in just 40 mins at 198 ℃.



Published: 01 May 2013
CLC:  X 783.2  
  O 633.14  
  O 621.25+6.4  
Cite this article:

WANG Xing-yuan, CHEN Ji-zhong. Study on depolymerization of polyethylene terephthalate by different alcohols. J4, 2013, 47(5): 867-873.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2013.05.019     OR     http://www.zjujournals.com/eng/Y2013/V47/I5/867


不同醇解聚聚对苯二甲酸乙二醇酯的反应特性

分别选择几种常用的一元醇和二元醇为介质, 基于在线红外仪监测不同醇解聚聚对苯二甲酸乙二醇酯(PET)的反应过程, 研究PET解聚反应特性, 比较不同醇解聚PET的反应活性. 在线红外分析结果表明, 对于不同的醇解体系, 在解聚过程中C—O、C=O基团的红外吸光强度均随反应时间不断增强, 在解聚完成后吸光强度趋于定值, 根据反应体系内C—O或C=O基团吸光强度随时间的变化可表征PET解聚率随时间变化的关系. 一元醇解聚PET的反应活性顺序为甲醇﹥乙醇﹥正丙醇﹥异丙醇, 二元醇解聚PET的活性顺序为1, 2-丙二醇﹥乙二醇﹥1, 4-丁二醇. 这是因为醇解聚PET是亲核取代反应, 在解聚过程中醇的反应活性与分子结构有关, 醇的羟基氧原子亲核活性越大、空间位阻越小, 解聚速率越快. 关于二元醇醇解PET体系, 研究反应温度对PET解聚过程的影响, 升高温度可以大大缩短二元醇解反应需要的时间, 198 ℃下以PET质量分数1%的醋酸锌为催化剂, 1, 2-丙二醇完全解聚PET需要40 min.

[1] 金离尘,刘春华. 聚酯工业的多元化发展[J]. 聚酯工业, 2008, 21(2): 17.
JIN Li-chen, LIU Chun-hua. Diversified development of polyester industry [J]. Polyester Industry, 2008, 21(2): 17.
[2] MISHRA S, GOJE A S. Kinetic and thermodynamic study of methanolysis of poly(ethylene terephthalate) waste powder [J]. Polymer International, 2003, 52(3): 337-342.
[3] KUROKAWA H, OHSHIMA M, SUGIYAMA K. Methanolysis of polyethylene terephthalate (PET) in the presence of aluminium tiisopropoxide catalyst to form dimethyl terephthalate and ethylene glycol [J]. Polymer Degradation and Stability, 2003, 79(3): 529-533.
[4] SAKO T, SUGETA T, OTAKE K. Depolymerization of polyethylene terephthalate to monomers with supercritical Methanol [J]. Journal of Chemical Engineering of Japan, 1997, 30(2): 342-346.
[5] 陈磊, 吴勇强, 倪燕慧,等. 聚对苯二甲酸乙二醇酯在超临界甲醇中降解的研究)[J].高校化学工程学报, 2004, 5(18): 585-589.
CHEN Lei, WU Yong-qiang, NI Yan-hui, et al. Depolymerization of Polyethylene terephthalate in Supercritical Methanol [J]. Journal of Chemical Engineering of Chinese Universities, 2004, 5(18): 585-589.
[6] CHEN J Y, OU C F, HU Y C. Depolymerization of poly(ethylene terepthalate) resin under pressure [J]. Journal of Applied Polymer Science, 1991, 42(6):1501-1507.
[7] XI G X, LU M, SUN C. Study on depolymerization of waste polyethylene terephthalate into monomer of bis(2-hydroxyethyl terephthalate) [J]. Polymer Degradation and Stability, 2005, 87(1):117-120.
[8] LPEZ-FONSECA R, DUQUE-INGUNZA I, RIVAS B, et al. Chemical recycling of post-consumer PET wastes by glycolysis in the presence of metal salts [J]. Polymer Degradation and Stability, 2010, 95(6): 1022-1028.
[9] LPEZ-FONSECA R, DUQUE-INGUNZA I, RIVAS B, et al. Kinetics of catalytic glycolysis of PET wastes with sodium carbonate [J]. Chemical Engineering Journal, 2011, 168(1): 312-320.
[10] VIANA M E, RIUL A, CARVALHO G M. Chemical recycling of PET by catalyzed glycolysis: Kinetics of the heterogeneous reaction [J]. Chemical Engineering Journal, 2011, 173(1): 210-219.
[11] WANG H, YAN R, LI Z, et al. Fe-containing magnetic ionic liquid as an effective catalyst for the glycolysis of poly(ethylene terephthalate) [J]. Catalysis Communications, 2010, 11(8):763-767.
[12] IMRAN M, KIM B K, HAN M, et al. Sub- and supercritical glycolysis of polyethylene terephthalate (PET) into the monomer bis(2-hydroxyethyl) terephthalate (BHET) [J]. Polymer Degradation and Stability, 2010, 95(9):1686-1693.
[13] MANSOUR S H, IKLADIOUS N E. Depolymerization of poly(ethylene terephthalate) wastes using 1,4-butanediol and triethylene glycol [J]. Polymer Testing, 2002, 21(5): 497-505.
[14] 陈荣业. 分子结构与反应活性[M]. 北京:化学工业出版社, 2007: 142-161. 

[1] LAI Bo, ZHOU Yue-xi, YANG Ping, QIN Hong-ke, PANG Cui-cui, LIAN Yu. Degradation characteristic of ABS resin manufacturing wastewater
using different  advanced oxidation processible
[J]. J4, 2012, 46(3): 476-481.