Please wait a minute...
J4  2009, Vol. 43 Issue (11): 2038-2042    DOI: 10.3785/j.issn.1008-973X.2009.11.017
    
Magnetic nanowires based immunosensor and detecting system
YANG Hao1, YANG Xiao-he2, GUO Xi-shan3, CHEN Yu-quan1, PAN Min1
(1. State Specialized Laboratory of Biomedical Sensors, Zhejiang University, Hangzhou 310027, China;
2. Zhejiang Medical Device Institute, Hangzhou 310009, China;
3. College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310029, China)
Download:   PDF(1058KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The immunosensor and detecting system based on magnetic nanowires were studied for rapid immune detection and on-line analysis of biological sample. Based on the special magnetic properties of magnetic nanowires, an easy operating, easy taking and rapid reacting magnetic detecting system was developed by optimizing the geometry parameters of detect coil. Fe nanowires were electrochemically deposited with porous anodic aluminum oxide template. The biological probes of Fe nanowires/chiosan/α-HCG antibody were synthesized. Samples of concentrations of 1, 2 and 5 g/L were detected. The results showed that the sensitivity of the system was 0.2 g/L. The sensitivity can be improved by increasing the signal noise rate and the quality of coil and printed circuit board, reducing the parasitic capacitance, and compensating the temperature excursion.



Published: 01 November 2009
CLC:  R 318  
  TP 212.3  
Cite this article:

YANG Hao, YANG Xiao-He, GUO Xi-Shan, et al. Magnetic nanowires based immunosensor and detecting system. J4, 2009, 43(11): 2038-2042.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2009.11.017     OR     http://www.zjujournals.com/eng/Y2009/V43/I11/2038


基于磁性纳米线的免疫传感器及检测系统

为了提高免疫检测速度,实现生物样品的在线分析,研究以磁性纳米线作为标记物的免疫传感器及检测系统.利用磁性纳米线独特的磁化特性,提出一种操作简便、便于携带、响应迅速的磁性免疫检测的具体方案,通过对系统感应线圈几何参数的优化设计,构建磁性纳米线免疫传感器检测系统.利用阳极氧化铝模板,电沉积制备磁性纳米线,并以此合成磁性纳米线/壳聚糖/α-HCG抗体生物探针.对1、2、5 g/L不同质量浓度的样品进行检测,实验结果表明,此检测系统的灵敏度可达0.2 g/L,并且有进一步提高的空间.通过提高激励信号的信噪比、提高线圈加工质量和印制线路板质量、减小布线寄生电容、考虑温度漂移补偿等手段,可以进一步提高检测灵敏度.

[1] GAO Jian-hua, ZHAN Qing-feng, HE Wei, et al. Thermally activated magnetization reversal process of self-assembled Fe55Co45 nanowire arrays [J]. Journal of Magnetism and Magnetic Materials, 2006, 305(2): 365-371.
[2] XUE De-sheng, LI Fa-shen. 57Fe Mssbauer study of magnetic nanowires [J]. Hyperfine Interactions, 2004, 156(1-4): 31-40.
[3] KOMELJ M, EDERER C, FAHNLE M. The electron theory of magnetism in monatomic nanowires [J]. Advances in Solid State Physics, 2003, 43: 781-788.
[4] TANG X T, WANG G C, SHIMA M. Magnetic layer thickness dependence of magnetization reversal in electrodeposited CoNi/Cu multilayer nanowires [J]. Journal of Magnetism and Magnetic Materials, 2007, 309(2): 188-196.
[5] CHIRIAC H, MOGA A E, URSE M, et al. Preparation and magnetic properties of amorphous NiP and CoP nanowire arrays [J]. Journal of Magnetism and Magnetic Materials, 2004, 272-276(Part 3): 1678-1680.
[6] KOI N, OKU T, NISHIJIMA M. Fe nanowire encapsulated in boron nitride nanotubes [J]. Solid State Communications, 2005, 136(6): 342-345.
[7] NAVAS D, ASENJO A, JAAFAR M, et al. Magnetic behavior of NixFe(100-x) (65≤x≤100) nanowire arrays [J]. Journal of Magnetism and Magnetic Materials, 2005, 290/291(Part 1): 191-194.
[8] SAEDI A, GHORBANI M. Electrodeposition of Ni-Fe-Co alloy nanowire in modified AAO template [J]. Materials Chemistry and Physics, 2005, 91(2/3): 417-423.
[9] WANG R L, TANG S L, NIE B, et al. Fabrication and magnetic properties of ordered Fe60Pb40 nanowire arrays electrodeposited in AAO templates [J]. Solid State Communications, 2007, 142(11): 639-642.
[10] GOZZI D, LATINI A, CAPANNELLI G, et al. Synthesis and magnetic characterization of Ni nanoparticles and Ni nanoparticles in multiwalled carbon nanotubes [J]. Journal of Alloys and Compounds, 2006, 419(1/2): 32-39.

[1] WU Dong-dong, ZHANG Wen-guang, MERCERON Gilles, LUO Yun. Mechanical simulation of neural electrode-brain tissue interface
under different micro-motion conditions
[J]. J4, 2013, 47(2): 256-260.
[2] CHENG Gong, WANG Jiang-rong, WU Cheng-xiong, HU Ning, ZHOU Jie, WANG Ping. Software system design and algorithms analysis
for automatic multifunctional cell physiological analyzer
[J]. J4, 2012, 46(12): 2285-2292.
[3] WU Cheng-xiong, CAI Hua, HU Ning, HU Zhao-ying, CHENG Gong, XIAO Li-dan, YU Hui. Design of automatic analysis instrument for  cell physiological
multi-parameter detection based on integrated chip
[J]. J4, 2012, 46(9): 1715-1721.
[4] TU Yue-wen, CHEN Hang, FU Xiu-quan,LI Ding-li,HUANG Chao,TANG Ya-wei,YE Shu-ming. Beats clustering based algorithm for fast recognition of
motion artifact sections in Holter system
[J]. J4, 2012, 46(6): 1148-1156.
[5] WANG Juan, HUANG Zhong-chao, LIU Zheng-chun. T-wave alternans detection based on enhanced spectral method
and singular value decomposition
[J]. J4, 2012, 46(1): 177-181.
[6] CHEN Wei-dong,LI Xin,LIU Jun,HAO Yao-yao,LIAO Yu-xi,SU Yu,ZHANG Shao-min,ZHENG X. Mathematical morphology based electro-oculography recognition
algorithm for human-computer interaction
[J]. J4, 2011, 45(4): 644-649.
[7] Zhou Hao, Wang You-zhao, Zheng Yin-fei. The advance of medical ultrasonic coded excitation[J]. J4, 2011, 45(2): 387-391.
[8] YANG Hao, YANG Xiao-he, CHEN Yu-quan, PAN Min. Design of electrochemical biosensors based on diffusion kinetics[J]. J4, 2010, 44(11): 2209-2213.
[9] LI Feng, CHEN Yu-Quan, HU Da-Ge, ZHENG Yin-Fei. Study on coded excitation in color flow mapping system[J]. J4, 2010, 44(6): 1237-1240.
[10] ZHENG Yin-Fei, LI Feng, YANG Hao. Ultrasonic wave aberration effect on second harmonic imaging[J]. J4, 2010, 44(5): 875-880.
[11] SHU Dan-Hua, TONG Ji-Jun, BO Min, DENG. Electroencephalogram on pain relief of transcutaneous electrical acupoint stimulation[J]. J4, 2009, 43(12): 2319-2322.
[12] ZHANG Shao-Min, CHEN Wei-Dong, SUN Chao, et al. Synchronous recording and analyzing system for animal's neuronal activity and behavior[J]. J4, 2009, 43(11): 2028-2033.
[13] ZHU Dan-hua, CHEN Da-jing, CHEN Yu-quan, PAN Min. Enhancement of steady-state visual evoked potentials using
parameter-tuned stochastic resonance
[J]. J4, 2012, 46(5): 918-922.