Please wait a minute...
J4  2009, Vol. 43 Issue (5): 796-800    DOI: 10.3785/j.issn.1008-973X.2009.05.002
    
Hierarchical hybrid control system of small unmanned helicopter
HOU Xin, LI Ping, HAN Bo, FANG Zhou
(Department of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China)
Download:   PDF(990KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A hierarchical hybrid control system of a small unmanned helicopter was designed based on the hierarchical architecture and the hybrid system theory. The system was divided into three layers: the regulation layer consisting of multiple single mode controllers responsible for different flight modes is a continuous dynamic system; the action planning layer performs the transition of multiple flight modes and gives flight reference trajectories; the flight schedule layer assigns the discrete evolution to execute an appropriate flight mode. The hierarchical hybrid control system was verified in a rectangle cruise flight in three- dimensional  space on an unmanned helicopter.



Published: 18 November 2009
CLC:  TP273  
  V249.1  
Cite this article:

HOU Xin, LI Beng, HAN Bei, et al. Hierarchical hybrid control system of small unmanned helicopter. J4, 2009, 43(5): 796-800.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2009.05.002     OR     http://www.zjujournals.com/eng/Y2009/V43/I5/796


小型无人直升机分层混杂控制系统

基于分层简化思想和混杂系统理论,设计了具有三层结构的小型无人直升机混杂控制系统:下层的运动控制层是由多个不同形式的单模态控制器构成的连续动态系统,每个控制器对应于直升机的一个飞行模态;中间的动作规划层进行多个单模态控制器之间的稳定切换,并给出直升机的飞行参考轨迹;上层的飞行调度层根据状态信息产生离散事件,发出控制器调度指令.采用分层混杂控制系统的小型无人直升机,在实际应用中完成了三维空间内的矩形航线飞行,实际飞行数据验证了控制系统的有效性.

[1] USA, Office of the Secretary of Defense. Unmanned aircraft systems roadmap: 2005-2030 [R]. 2005.
[2] GRASSI E, KOSTAS S T, DASH S. Integrated system identification and PID controller tuning by frequency loop-shaping [J]. IEEE Transactions on Control Systems Technology, 2001, 9(2): 285294.
[3] NAIRA H, ANTHONY J C. Adaptive output feedback control of uncertain multi-input multi-output systems using single hidden layer neural networks [J]. International Journal of Control, 2002, 77(15): 13181329.
[4] SHIM H. Hierarchical flight control system synthesis for rotorcraft-based unmanned aerial vehicles [D]. Berkeley: University of California, 2000.
[5] WANG Hui, XU Jin-fa, GAO Zheng. Adaptive neural network attitude control for unmanned helicopter [J]. Transactions of Nanjing University of Aeronautics and Astronaut, 2004, 21(3): 168173.
[6] LEE E H, SHIM H, PARK H, et al. Design of hover- ing attitude controller for a model helicopter [C]∥ Proceedings of Society of Instrument and Control Engineers. Kanazawa: [s.n.], 1993: 13851389.
[7] PROUTY R W. Helicopter performance, stability, and control [M]. Malabar: Krieger, 1995.
[8] HOU Xin, LI Ping, FANG Zhou, et al. An application of fuzzy PID algorithm on unmanned helicopter attitude control [C]∥ Proceedings of the 6th World Congress on Intelligent Control and Automation. Dalian: IEEE, 2006: 91299133.
[9] LIU J, LIU X, KOO T J, et al. A hierarchical hybrid system model and its simulation [C]∥ Proceedings of the 38th IEEE Conference on Decision and Control. Phoenix: IEEE,  1999: 35083513.

No related articles found!