Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (11): 2168-2174    DOI: 10.3785/j.issn.1008-973X.2022.11.007
机械与能源工程     
通风型光伏/光热建筑一体化系统的实验研究
马丽群1(),赵玉龙2,赵运通3,王世学2,*()
1. 国家能源集团,北京 100039
2. 天津大学 机械工程学院,天津 300350
3. 河北工业大学 能源与环境工程学院,天津 300401
Experimental study of ventilated building integrated photovoltaic/ thermal system
Li-qun MA1(),Yu-long ZHAO2,Yun-tong ZHAO3,Shi-xue WANG2,*()
1. China Energy Investment Group Co., Beijing 100039, China
2. School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
3. School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
 全文: PDF(2082 KB)   HTML
摘要:

以铜铟镓硒光伏组件为光电单元,通过构建对比实验组研究通风流速和气候条件对通风型光伏/光热建筑一体化系统的光热和光电性能的影响. 结果表明,系统得热功率和发电功率均与辐照强度呈正相关,受环境温度影响,变化规律并非完全一致. 当通风流速为2.2 m/s时,太阳能综合利用率达到65.4%,提出平均得热效率和相对发电量用于表征系统的光热及光电性能,获得与通风流速的定量关系;当通风流速由0.4 m/s增大到2.2 m/s时,系统平均得热效率提高了130.0%,发电效率仅增加4.0%左右. 在考虑阻力耗能的情况下,通风流速是系统高效运行的关键,通过不同地域的重复实验,验证了定量关系的普适性.

关键词: 铜铟镓硒光伏/光热建筑一体化通风流速得热效率发电效率    
Abstract:

Taking copper indium gallium selenium photovoltaic modules as photovoltaic cells, a comparative experimental group was established to investigating the effects of ventilation flow rate and climate conditions on the thermal and photoelectric performance of the ventilated building integrated photovoltaic/ thermal system. The results showed that the thermal power and power generation of the system were positively correlated with the irradiation intensity, but the variation was not completely inconsistent due to the influence of ambient temperature. When the ventilation flow rate was 2.2 m/s, the comprehensive utilization rate of solar energy reached 65.4%. The average thermal efficiency and the relative power generation were proposed to characterize the system performance, and a quantitative relationship with the ventilation flow rate was obtained. When the ventilation flow rate increased from 0.4 m/s to 2.2 m/s, the average thermal efficiency of the system increased by 130.0% and the power generation efficiency only increased by about 4.0%. Considering the resistance and energy consumption, the ventilation flow rate was critical to the efficient operation of the system. The generalizability of the quantitative relationship was verified through repeated experiments in different regions.

Key words: copper indium gallium selenide    building integrated photovoltaic/thermal    ventilation flow    thermal efficiency    power generation efficiency
收稿日期: 2021-12-10 出版日期: 2022-12-02
CLC:  TK 513.5  
基金资助: 国家自然科学基金资助项目 (51876136)
通讯作者: 王世学     E-mail: liqun.ma@chnenergy.com.cn;wangshixue_64@tju.edu.cn
作者简介: 马丽群(1971—),女,高级工程师,从事能源领域发电技术研究. orcid.org/0000-0001-7515-8505. E-mail: liqun.ma@chnenergy.com.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
马丽群
赵玉龙
赵运通
王世学

引用本文:

马丽群,赵玉龙,赵运通,王世学. 通风型光伏/光热建筑一体化系统的实验研究[J]. 浙江大学学报(工学版), 2022, 56(11): 2168-2174.

Li-qun MA,Yu-long ZHAO,Yun-tong ZHAO,Shi-xue WANG. Experimental study of ventilated building integrated photovoltaic/ thermal system. Journal of ZheJiang University (Engineering Science), 2022, 56(11): 2168-2174.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.11.007        https://www.zjujournals.com/eng/CN/Y2022/V56/I11/2168

图 1  基于铜铟镓硒光伏组件的BIPV/T实验系统
参数 数值
额定功率/W 100.00
额定电压/V 75.00
额定电流/Ω 1.33
开路电压/V 94.10
额定功率温度系数(%/℃) -0.36
表 1  CIGS光伏组件参数
图 2  惠州实验期间气候条件
图 3  典型日气候参数(2017-12-10)
图 4  系统全天热、电性能(通风流速2.2 m/s)
图 5  辐照强度对背板温度的影响(通风流速2.2m/s)
图 6  背板相对温升变化情况(以通风流速2.2 m/s为基准)
图 7  辐照强度对系统热性能的影响
图 8  通风流速对得热效率的影响
图 9  通风流速对相对发电量的影响
图 10  通风流速对阻力功耗的影响
图 11  北京实验期间气候条件
图 12  北京与惠州地区系统热电性能比较
1 MAGHRABIE H M, ELSAID K, SAYED E T, et al Building-integrated photovoltaic/thermal (BIPVT) systems: Applications and challenges[J]. Sustainable Energy Technologies and Assessments, 2021, 45: 101151
doi: 10.1016/j.seta.2021.101151
2 WANG P C, LIU Z B, ZHANG L Sustainability of compact cities: a review of inter-building effect on building energy and solar energy use[J]. Sustainable Cities and Society, 2021, 72: 1- 18
3 ROUNIS E D, ATHIENITIS A, STATHOPOULOS T Review of air-based PV/T and BIPV/T systems- performance and modeling[J]. Renewable Energy, 2021, 163: 1729- 1753
doi: 10.1016/j.renene.2020.10.085
4 YADAV S, PANDA S K Thermal performance of BIPV system by considering periodic nature of insolation and optimum tilt-angle of PV panel[J]. Renewable Energy, 2020, 150: 136- 146
5 李莉莉, 白羽, 邓立生, 等 太阳能光热与光电/光热系统在中国不同建筑气候带下的性能研究[J]. 可再生能源, 2021, 39 (4): 464- 471
LI Li-li, BAI Yu, DENG Li-sheng, et al Study on the performance of solar photothermal and photovoltaic/ photothermal systems in different building climates in China[J]. Renewable Energy Resources, 2021, 39 (4): 464- 471
doi: 10.3969/j.issn.1671-5292.2021.04.006
6 ALIBAKHSH K, YASAMIN K, SOUDABEH G, et al Effects of forced convection on the performance of a photovoltaic thermal system: an experimental study[J]. Experimental Thermal and Fluid Science, 2017, 85: 13- 21
doi: 10.1016/j.expthermflusci.2017.02.012
7 庞玮, 于洪文, 张林睿, 等 环境条件和冷却水流量对光伏光热系统的性能影响[J]. 可再生能源, 2018, 36 (4): 501- 505
PANG Wei, YU Hong-wen, ZHANG lin-rui, et al Effects of environmental conditions and cooling water flow rate on the performance of photovoltaic photothermal system[J]. Renewable Energy Resources, 2018, 36 (4): 501- 505
doi: 10.3969/j.issn.1671-5292.2018.04.005
8 MASOUD A, AMIN S, POUYAN T S, et al Energy and exergy analysis of two novel hybrid solar photovoltaic geothermal energy systems incorporating a building integrated photovoltaic thermal system and an earth air heat exchanger system[J]. Solar Energy, 2019, 188: 83- 95
doi: 10.1016/j.solener.2019.05.080
9 胡建辉, 陈务军, 赵兵, 等 PV-ETFE气枕系统冬季性能试验研究[J]. 浙江大学学报:工学版, 2014, 48 (10): 1816- 1821
HU Jian-hui, CHEN Wu-Jun, ZHAO Bing, et al Experimental studies on system performance of PV-ETFE cushion system in winter[J]. Journal of Zhejiang University: Engineering Science, 2014, 48 (10): 1816- 1821
10 ABDULLAH S, SALMANZADEH M, AMERI M, et al Energy saving in buildings by using the exhaust and ventilation air for cooling of photovoltaic panels[J]. Energy and Buildings, 2011, 43 (9): 2219- 2226
11 YANG T T, ANDREAS K, ATHIENITIS A K A study of design options for a building integrated photovoltaic/ thermal (BIPV/T) system with glazed air collector and multiple inlets[J]. Solar Energy, 2014, 104: 82- 92
doi: 10.1016/j.solener.2014.01.049
12 BAMBROOK S M, SPROUL A B Maximising the energy output of a PVT air system[J]. Solar Energy, 2012, 86 (6): 1857- 1871
doi: 10.1016/j.solener.2012.02.038
[1] 于冉冉, 刘联胜, 葛明慧, 赵景维. 太阳能温差发电系统的性能[J]. 浙江大学学报(工学版), 2018, 52(4): 769-774.