Please wait a minute...
浙江大学学报(工学版)
动力与能源工程     
排除法确定离子电流成因的试验
李春艳,张功,刘杰,高忠权
1.西安交通大学 能源与动力工程学院,陕西 西安710049;2.中国人民解放军 65066部队,辽宁 沈阳110101;
3.中国人民解放军 63933部队,北京100091
Experiments on causes of characteristic peaks of ion current using exclusive method
LI Chun yan, ZHANG Gong,LIU Jie, GAO Zhong quan
1.School of Energy and Power Engineering,Xi’an Jiaotong University,Xi‘an 710049, China;2. Troop 65066, People’s
Liberation Army, Shenyang 110101, China;3. Troop 63933, People‘s Liberation Army, Beijing 100091, China
 全文: PDF(1816 KB)   HTML
摘要:

为了研究N/H/C元素与离子电流特征峰的关系及离子电流第3峰的成因,提出排除法.在不同点火方式和空燃比下,分别测量了碳氢燃料在合成空气(氧/氮)和氧/氩混合气中燃烧产生的离子电流,并以离子电流信号、燃烧压力信号和火焰纹影照片为基础数据分析试验.结果表明:测量电极与点火电极分开,可以避免点火信号的干扰,测量系统检测不到离子电流第1峰;C元素主要影响离子电流第2峰,H和N元素主要影响第3峰;离子电流第3峰由火焰前锋面带电粒子被燃烧室壁面吸收与NO组分热离子化共同作用产生.

Abstract:

The effects of N/H/C chemical elements on ion current characteristic peaks and the cause of the third peak of ion current were investigated using exclusive method. Ion current generated during combustion of hydrocarbon fuel/air or hydrocarbon fuel/oxygen/argon in a constant combustion bomb was measured under different ignition styles and airfuel ratio. Experimental results were analyzed based on ion current curves and pressure curves and flame schlieren pictures. Results show that when measuring electrode is separated from ignition electrode, the first peak of ion current can’t be measured. Carbon element obviously affects the second peak of ion current and hydrogen and nitrogen element mainly act the third peak. The third peak of ion current is caused by charged particles of front flame absorbed by the chamber wall and thermal ionization of NO.

出版日期: 2017-01-14
:     
基金资助:

国家自然科学基金资助项目(51306143);中央高校基本科研业务费(xjj2013001).

通讯作者: 高忠权,男,讲师. 0000000252794952.     E-mail: gaozq@mail.xjtu.edu.cn
作者简介: 李春艳(1990-),女,硕士生, 从事发动机测量等研究. 0000000298067371. E-mail:aimili1314@stu.xjtu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

李春艳,张功,刘杰,高忠权. 排除法确定离子电流成因的试验[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008973X.2016.05.023.

LI Chun yan, ZHANG Gong,LIU Jie, GAO Zhong quan. Experiments on causes of characteristic peaks of ion current using exclusive method. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008973X.2016.05.023.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008973X.2016.05.023        http://www.zjujournals.com/eng/CN/Y2016/V50/I5/978

[1]CALCOTE H F. Mechanisms for the formation of ions in flames [J]. Combustion and Flame, 1957, 1 (4): 385-403.
[2]ERIKSSON L, NIELSEN L, NYTOMT J. Ignition control by ionization current interpretation[R]. SAE 960045, Detroit Michigan, USA:SAE, 1996.
[3]COLLINGS N, DINSDALE S, EADE D. Knock detection by means of the spark plug[R]. SAE 860635, Detroit Michigan, USA:SAE, 1986.
[4]BADAWYT ,RAIN,SINGHJ ,BRYZIK W, et al. Effect of design and operating parameters on the ion current in a singlecylinder diesel engine [J]. International Journal of Engine Research, 2011, 12(6):601-616.
[5]ALEXANDER B, FIALKOV. Investigations on ions in flames [J]. Progress in Energy and Combustion Science, 1997,23(5/6):399-528.
[6]HENEIN N A, BRYZIK W, ABDELRCHIM A, et al. Characteristic of ion current signals in compression ignition and spark ignition engines [J]. SAE International Journal of Engines, 2011, 3(4):110-118.
[7]SAITZKOFF A, REINMANN R, BERGLIND T,et al. An ionization equilibrium analysis of the spark plug as an ionization sensor [R]. SAE 960337, Washington DC, USA: SAE, 1996.
[8]SAITZKOFF A, REINMANN R, MAUSS F, et al. Incylinder pressure measurements using the spark plug as an ionization sensor [R]. SAE 970857 , Washington DC, USA: SAE, 1997.
[9]ANDERSSON I K. A comparison of combustion temperature models for ionization current modeling in an SI engine[R]. SAE 2004011465, Detroit Michigan, USA: SAE, 2004.
[10]AHMEDI A, MAUSS F, SUNDN1 B. Analysis of an Extended Ionization Equilibrium in the Postflame Gases for Spark Ignited Combustion[C]∥ASME 2004 Internal Combustion Engine Division Fall Technical Conference. California, USA: ASME, 2004:373-380.
[11] FRANKE A, REINMANN R, LARSSON A. The role of the electrodes for the ionization sensor signal[R]. SAE 2003010714, Washington DC, USA: SAE, 2003.
[12]GAO ZQ, LI BZ, LI CY, et al. Investigation on characteristics of ion current in a methanol directinjection sparkignition engine [J]. Fuel, 2015, 141(141): 185-191.
[13]GAO Z, LIU B, GAO H, et al. The correlation between the cylinder pressure and the ion current fitted with a Gaussian algorithm for a spark ignition engine fuelled with naturalgas–hydrogen blends [J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2014, 228(12): 1480-1490.
[14] HU E, HUANG Z, HE J, et al. Experimental and numerical study on laminar burning characteristics of premixed methane–hydrogen–air flames [J]. International Journal Of Hydrogen Energy, 2009, 34(11): 4876-4888.
[15]YOSHIYAMA S, TOMITA E, HAMAMOTO Y. Fundamental study on combustion diagnostics using a spark plug as ion probe [R].SAE 2000012828, Washington DC, USA: SAE, 2000.

[1] 董凯, 赖俊英, 钱晓倩, 詹树林, 阮方. 夏热冬冷地区居住建筑水平式外遮阳节能效果[J]. 浙江大学学报(工学版), 2016, 50(8): 1431-1437.
[2] 李佳琦, 范利武, 俞自涛. 超亲水表面在淬火冷却过程中的沸腾传热特性[J]. 浙江大学学报(工学版), 2016, 50(8): 1493-1498.
[3] 江衍铭, 张建全, 明焱. 集合神经网络的洪水预报[J]. 浙江大学学报(工学版), 2016, 50(8): 1471-1478.
[4] 钟崴, 彭梁, 周永刚, 徐剑, 从飞云. 基于小波包分析和支持向量机的锅炉结渣诊断[J]. 浙江大学学报(工学版), 2016, 50(8): 1499-1506.
[5] 夏玉峰, 任莉, 叶彩红, 王力. 基于RSM的立柱加强板定位布局多目标优化[J]. 浙江大学学报(工学版), 2016, 50(8): 1600-1607.
[6] 李林玉, 吴张华, 余国瑶, 戴巍, 罗二仓. 直线压缩机电声转换特性的实验[J]. 浙江大学学报(工学版), 2016, 50(8): 1529-1536.
[7] 曲巍崴, 唐伟, 毕运波, 李少波, 罗水均. 避免强迫装配和提升效率的预连接工艺规划[J]. 浙江大学学报(工学版), 2016, 50(8): 1561-1569.
[8] 胡小东, 顾临怡, 张范蒙. 应用于数字变量马达的高速开关阀[J]. 浙江大学学报(工学版), 2016, 50(8): 1551-1560.
[9] 杨姝, 刘国平, 亓昌, 王大志. 金属空心球梯度泡沫结构抗冲击特性仿真与优化[J]. 浙江大学学报(工学版), 2016, 50(8): 1593-1599.
[10] 杨章, 童根树, 张磊. 对称布置2根单侧加劲肋的有效刚度[J]. 浙江大学学报(工学版), 2016, 50(8): 1446-1455.
[11] 蒋翔, 童根树, 张磊. 耐火钢-混凝土组合梁抗火性能试验[J]. 浙江大学学报(工学版), 2016, 50(8): 1463-1470.
[12] 单华峰, 夏唐代, 俞峰, 胡军华, 潘金龙. 地下增层开挖托换桩的屈曲稳定临界荷载分析[J]. 浙江大学学报(工学版), 2016, 50(8): 1425-1430.
[13] 辜天来,张帅,郑耀. 咽式进气道/等直隔离段的反压特性[J]. 浙江大学学报(工学版), 2016, 50(7): 1418-1424.
[14] 程时伟, 陆煜华, 蔡红刚. 移动设备眼动跟踪技术[J]. 浙江大学学报(工学版), 2016, 50(6): 1160-1166.
[15] 郑成志, 高金良, 何文杰. 基于FastICA算法的物理漏损流量分析模型[J]. 浙江大学学报(工学版), 2016, 50(6): 1031-1039.