Please wait a minute...
浙江大学学报(工学版)
动力与能源工程     
激光诱导下雾化水滴颗粒的击穿特性
盛德仁,苏云鹏,史香锟,陈坚红,李蔚
浙江大学 热工与动力系统研究所,浙江 杭州 310027
Optical breakdown model of atomized water droplet induced by laser
SHENG De ren, SU Yun peng, SHI Xiang kun, CHEN Jian hong, LI Wei
Institute of Thermal Science and Power System, Zhejiang University, Hangzhou 310027,  China
 全文: PDF(734 KB)   HTML
摘要:

为了对气液两相介质激光推进技术中雾化水滴的击穿阈值特性进行研究,建立激光诱导下单个水滴微粒的光学击穿模型,计算分析入射功率密度、水滴微粒半径、入射激光波长等相关因素对雾化水滴颗粒击穿过程的影响.结果表明:随入射功率密度的增大,由107 W/cm2上升至1011 W/cm2,击穿位置沿入射反方向移动.随水滴微粒半径的增大,从0到50 μm,击穿阈值减小,从35×106 W/cm2下降到25×106 W/cm2,击穿位置沿入射方向移动.随激光波长的增大,由0到12 μm,击穿位置沿入射反方向移动;当波长较短时(λ<2 μm),击穿阈值随波长增大而迅速减小,从25×106 W/cm2下降到5×106 W/cm2.当波长较长时(λ>2 μm),波长增大对击穿阈值影响较小.

Abstract:

The optical breakdown model of water droplet induced by laser was established to analyze the breakdown threshold characteristic of atomized water drop in gasliquid two phase laser propulsion. Some influence factors of laser breakdown process, such as laser density, radius of water drop and wavelength of laser, were discussed. Results show that with the increase of incident power density from 107 W/cm2 to 1011 W/cm2, the breakdown position moves along the opposite direction of the incident laser. The breakdown threshold decreases from 35×106 W/cm2 to 25×106 W/cm2 and the breakdown position moves along the direction of the incident laser with the improvement of the radius of water droplets fromo 0 to 50 μm. The breakdown position moves along the opposite direction of the incident laser with the increase of the laser wavelength fromo 0 to 12 μm. The breakdown threshold  rapidly decreases from 2.5×107 W/cm2 to 5×106 W/cm2 with the increase of laser wavelength when the wavelength is short (λ<2 μm), while the breakdown threshold has a little variation when the wavelength is long (λ>2μm).

出版日期: 2017-01-14
:  TN 249  
基金资助:

 国家自然科学基金资助项目(51276169);浙江省自然科学基金资助项目(LY13E060001).

作者简介: 盛德仁(1960-),男,教授,从事汽轮机与燃气轮机循环特性,两相流光学测量技术等研究.ORCID: 0000000267981574 E-mail:shengdr@zju.edu.cn.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

盛德仁,苏云鹏,史香锟,陈坚红,李蔚. 激光诱导下雾化水滴颗粒的击穿特性[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008973X.2016.05.019.

SHENG De ren, SU Yun peng, SHI Xiang kun, CHEN Jian hong, LI Wei. Optical breakdown model of atomized water droplet induced by laser. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008973X.2016.05.019.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008973X.2016.05.019        http://www.zjujournals.com/eng/CN/Y2016/V50/I5/949

[1]李修乾, 洪延姬, 文明, 等. 水滴烧蚀多脉冲激光推进性能[J]. 强激光与粒子束, 2011, 23(7): 1731-1734.
LI Xiuqian, HONG Yanji, WEN Ming, et al. Propulsive characteristics of water droplets for multipulse laser propulsion [J]. High Power Laser and Particle Beams, 2011, 23(7): 1731-1734.
[2] CHYLEK P, PENDLETON J D, PINNICK R G. Internal and nearsurface scattered field of a spherical particle at resonant conditions [J]. Applied optics, 1985, 24(23): 3940-3942.
[3] PINNICK R G, CHYLEK P, JARZEMBSKI M, et al. Aerosolinduced laser breakdown thresholds: wavelength dependence [J]. Applied optics, 1988, 27(5): 987-996.
[4] VOLKOV K, EMELYANOV V. Interaction of laser pulse with liquid droplet [C]∥28th International Symposium on Shock Waves. Manchester: Springer Berlin Heidelberg,2012: 265-271. 2012.
[5] EFIMENKO E S, MALKOV Y A, MURZANEV A A, et al. Femtosecond laser pulseinduced breakdown of a single water microdroplet [J]. JOSA B, 2014, 31(3): 534-541.
[6] MUSING A, RIEDEL U, WARNATZ J, et al. Laserinduced breakdown in air and behind droplets: A detailed MonteCarlo simulation [J]. Proceedings of the Combustion Institute, 2007, 31(2): 3007-3014.
[7] YASHIRO H, SASAKI F, KAKEHATA M. Measurement of number density of water droplets in aerosol by laserinduced breakdown [J]. Applied Physics Express, 2010, 3(3): 036601.
[8] AHN D, HA J, KIM D. Development of an optohydrodynamic process to remove nanoparticles from solid surfaces [J]. Applied Surface Science, 2013, 265: 630-636.
[9] BENINCASA D S, BARBER P W, ZHANG J Z, et al. Spatial distribution of the internal and nearfield intensities of large cylindrical and spherical scatterers [J]. Applied Optics, 1987, 26(7): 1348-1356.
[10] 张伟, 路远, 杜石明, 等. 球形粒子 Mie散射特性分析[J]. 光学技术, 2010, 36(6): 936-939.
ZHANG Wei, LU Yuan, DU Shiming, et al. Analysis of characteristics of Mie scattering [J]. Optical Technique, 2010, 36(6): 936-939.
[11] WANG J J, GOUESBET G, HAN Y P, et al. Study of scattering from a sphere with an eccentrically located spherical inclusion by generalized Lorenz–Mie theory: internal and external field distribution [J]. JOSA A, 2011, 28(1): 24-39.
[12] BOHREN C F, HUFFMAN D R. Absorption and scattering of light by small particles [M]. New York : John Wiley & Sons, 2008: 82-129.
[13] 韩晓玉, 杨小丽. 激光大气击穿阈值的数值分析[J]. 强激光与粒子束, 2005, 17(11): 1655-1659.
HAN Xiaoyu, YANG Xiaoli. Numerical calculation of atmospheric breakdown threshold induced by laser[J]. High Power Laser and Particle Beams, 2005, 17(11): 1655-1659.
[14]王亚伟, 王立峰, 邓晓斌, 等. 飞秒激光诱导水光学击穿阈值[J]. 强激光与粒子束, 2010, 22(1): 49-52.
WANG Yawei, WANG Lifeng, DENG Xiaobin, et al. Femtosecond laserinduced optical breakdown threshold in water [J]. High Power Laser and Particle Beams, 2010, 22(1): 49-52.
[15] 李明, 张宏超, 沈中华, 等. 脉冲激光导致水光学击穿阈值计算的简化模型[J]. 红外与激光工程, 2006, 34(6): 660-663.
LI Ming, ZHANG Hongchao, SHEN Zhonghua, et al. Simple model for optical breakdown threshold for water induced by pulse laser [J]. Infrared and Laser Engineering, 2006, 34(6): 660-663.
[16]EICKMANS J H, HSIEH W F, CHANG R K. Laserinduced explosion of H2O droplets: spatially resolved spectra [J]. Optics letters, 1987, 12(1): 22-24.

[1] 江建平, 骆仲泱, 陈浩, 周栋, 沙东辉, 方梦祥, 岑可法. 2种常用颗粒物粒径表征方法的对比[J]. 浙江大学学报(工学版), 2015, 49(12): 2326-2332.
[2] 曹宇, 刘建国, 曾晓雁. 微笔-激光直写组合加工制备多电极阵列系统[J]. J4, 2012, 46(6): 1004-1007.