Please wait a minute...
浙江大学学报(工学版)
机械工程     
基体粗糙度对神经电极聚苯胺涂层性能的影响
孙晓文, 张文光
上海交通大学 机械与动力工程学院, 机械系统与振动国家重点实验室, 上海 200240
Substrate roughness affects the properties of PANI coatings for neural electrode
SUN Xiao wen, ZHANG Wen guang
State key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
 全文: PDF(1922 KB)   HTML
摘要:

采用电化学粗糙法对铂电极基体表面进行粗糙化处理,研究基体粗糙度对沉积在电极表面的聚苯胺涂层的电化学特性和稳定性的影响.结果表明:采用电化学粗糙法能够显著增加电极的表面粗糙度,得到可控的粗糙化基体;随着粗糙系数(fR)的增加,粗糙化基体的双层电容近乎线性增长,当fR为424时基体的双层电容是光滑基体的77倍,聚苯胺(PANI)涂层在粗糙化基体表面的聚合速率也随之提高,涂层表面形态更为均匀、致密;提高基体粗糙度,PANI修饰电极的导电性能显著提升、界面阻抗降低,同时电极稳定性得到改善,粗糙化基体PANI修饰电极(fR为424)的电荷密度相比光滑基体提高了56倍、1 kHz处的界面阻抗降低了1/2.与光滑基体表面的PANI涂层相比,粗糙化基体表面的样品更有利于神经电极的电记录和刺激.

Abstract:

Platinum (Pt) substrates were electrochemically roughened. The electrochemical properties and stability of the roughened platinum electrodes modified with polyaniline (PANI) coatings were evaluated. Results show that: the surface roughness factors (fR) of Pt substrates can be increased in a controlled manner. With the increase of fR, the roughened substrates show linear increasing double layer capacitance (Cdl). The Cdl of the roughened substrate (fR=424) is 38.9 mF/cm2, which is about 77 times greater than that of a smooth substrate. The polymerization rate of PANI coatings increases as the roughness factors increase. The morphology of PANI coatings on the roughened substrates exhibits more uniform and compact. The charge density of PANI coatings on the roughened substrate (fR=424) increases by about 5.6-fold and the interfacial impedance reduces half at the biologically relevant frequency of 1 kHz compared to that of PANI coatings on a smooth substrate. These results indicate the potential use of PANI coatings on the roughened substrates in neural recording and stimulation.

出版日期: 2017-01-14
:  TQ 317  
基金资助:

国家自然科学基金资助项目(51175334);上海交通大学医工理交叉基金资助项目(No.YG2013MS06).

通讯作者: 张文光,男,副教授.ORCID: 0000000225101479.     E-mail: zhwg@sjtu.edu.cn.
作者简介: 孙晓文(1991-),女,硕士生,从事神经电极等研究.ORCID: 0000000265993686. E—mail: sheersun@sjtu.edu.cn.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

孙晓文, 张文光. 基体粗糙度对神经电极聚苯胺涂层性能的影响[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008973X.2016.05.014.

SUN Xiao wen, ZHANG Wen guang. Substrate roughness affects the properties of PANI coatings for neural electrode. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008973X.2016.05.014.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008973X.2016.05.014        http://www.zjujournals.com/eng/CN/Y2016/V50/I5/913

[1] CASTAGNOLA V, DESCAMPS E, LECESTRE A, et al. Parylenebased flexible neural probes with PEDOT coated surface for brain stimulation and recording [J]. Biosensors and Bioelectronics, 2015, 67: 450-457.
[2] OLUIGBO C O, REZAI A R. Addressing neurological disorders with neuromodulation [J]. Biomedical Engineering, IEEE Transactions on, 2011, 58(7): 1907-1917.
[3] PARK S, SONG Y J, BOO H, et al. Nanoporous Pt microelectrode for neural stimulation and recording: in vitro characterization [J]. The Journal of Physical Chemistry C, 2010, 114(19): 8721-8726.
[4] HARRIS A R, MOLINO P J, KAPSA R M I, et al. Optical and electrochemical methods for determining the effective area and charge density of conducting polymer modified electrodes for neural stimulation [J]. Analytical Chemistry, 2015, 87(1): 738-746.
[5] DESAI S A, ROLSTON J D, GUO L, et al. Improving impedance of implantable microwire multielectrode arrays by ultrasonic electroplating of durable platinum black [J]. Frontiers in Neuroengineering, 2010, 3(5): 1-11.
[6] CLARK J J, SANDBERG S G, WANAT M J, et al. Chronic microsensors for longitudinal, subsecond dopamine detection in behaving animals [J]. Nature Methods, 2010, 7(2): 126-129.
[7] MERRILL D R, BIKSON M, JEFFERYS J G R. Electrical stimulation of excitable tissue: design of efficacious and safe protocols [J]. Journal of Neuroscience Methods, 2005, 141(2): 171-198.
[8] RUI Y, LIU J, WANG Y, et al. Parylenebased implantable Ptblack coated flexible 3D hemispherical microelectrode arrays for improved neural interfaces[J]. Microsystem Technologies, 2011, 17(3): 437-442.
[9] WEREMFO A, CARTER P, HIBBERT D B, et al. Investigating the interfacial properties of electrochemically roughened platinum electrodes for neural stimulation [J]. Langmuir, 2015, 31(8): 2593-2599.
[10] VISINTIN A, TRIACA W E, ARVIA A J. Electrochemical procedure for the development of large active surface area platinum electrodes with preferred crystallographic orientations [J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1987, 221(1): 239-243.
[11] GHASEMIMOBARAKEH L, PRABHAKARAN M P, MORSHED M, et al. Application of conductive polymers, scaffolds and electrical stimulation for nerve tissue engineering [J]. Journal of Tissue Engineering and Regenerative Medicine, 2011, 5(4): 17-35.
[12] GREEN R A, LOVELL N H, WALLACE G G, et al. Conducting polymers for neural interfaces: challenges in developing an effective longterm implant [J]. Biomaterials, 2008, 29(24): 3393-3399.
[13] JAN E, HENDRICKS J L, HUSAINI V, et al. Layered carbon nanotubepolyelectrolyte electrodes outperform traditional neural interface materials [J]. Nano Letters, 2009, 9(12): 4012-4018.
[14] COGAN S F. Neural stimulation and recording electrodes [J]. Annual Review of Biomedical Engineering, 2008, 10: 275-309.
[15] CUI X T, ZHOU D D. Poly (3, 4ethylenedioxythiophene) for chronic neural stimulation [J]. Neural Systems and Rehabilitation Engineering, IEEE Transactions on, 2007, 15(4): 502-508.

No related articles found!