Please wait a minute...
浙江大学学报(工学版)
土木与交通工程     
钢管混凝土组合桥墩变形能力计算模型
王震,王景全,戚家南
1. 东南大学 混凝土及预应力混凝土结构教育部重点实验室,江苏 南京 210096;
2. 东南大学 国家预应力工程技术研究中心,江苏 南京 210096
Computing model for deformation capacity of concrete filled steel tube reinforced concrete bridge columns
WANG Zhen,WANG Jing quan,QI Jia nan
1. Key Laboratory of Concrete and Prestressed Concrete Structure of China Ministry of Education,Southeast University,
Nanjing 210096,China;2. National Prestress Engineering Research Center,Southeast University,Nanjing 210096,China
 全文: PDF(1200 KB)   HTML
摘要:

为准确预测钢管混凝土组合(CFSTRC)桥墩的变形能力,提出考虑剪切和纵筋滑移影响的计算模型. 该模型基于纤维模型计算结果,考虑PΔ效应,将桥墩变形分为弯曲变形、剪切变形和纵筋滑移变形3部分,分别采用塑性铰模型、压弯剪耦合作用分析方法及纵筋滑移模型计算桥墩的弯曲变形、剪切变形和纵筋滑移变形. 利用计算模型与塑性铰模型对3根已知试件分别进行计算,建议模型计算结果与试验值吻合较好,塑性铰模型不能考虑剪切变形影响,计算结果较试验值偏小. 结果表明:CFSTRC桥墩在轴压力和水平荷载共同作用下的剪切变形不容忽视;利用建议模型能够得到CFSTRC桥墩在压剪弯共同作用下的非线性变形全过程,结果可信,可用于CFSTRC桥墩的变形计算.

Abstract:

A calculation model was put forward to consider influence of shear and reinforcement slip to predict deformation capacity of concrete filled steel tube reinforced concrete (CFSTRC) bridge columns accurately. Based on the calculation results of fiber model, the model took PΔ effect into account and divided the deformation into three components, namely flexural deformation, shear deformation and reinforcement slip deformation. The plastic hinge model was used to estimate flexure deformation, the axialFlexureShearInteraction (AFSI) method was utilized to predict shear deformation, and the reinforcement slip model was employed to calculate reinforcement slip deformation. The proposed model and plastic hinge model were utilized to predict the deformation of three test specimens provided by literatures. Results of the proposed model show good correlation with experimental values. While the plastic hinge model cannot take shear deformation into account, the results of plastic hinge model are smaller than the experimental data. Results show that shear deformation cannot be ignored when CFSTRC bridge columns are subjected to axial compression and lateral load. The proposed model can evaluate the nonlinear deformation of CFSTRC bridge columns during the whole loading process under the combination of axial load, shear and bending moment. Therefore the calculation model can be used to evaluate the deformation of CFSTRC bridge columns and gives reliable prediction.

出版日期: 2017-01-14
:     
基金资助:

国家自然科学基金资助项目(51378110);国家支撑计划资助项目(2011BAJ09B02);江苏省“六大人才高峰”第十一批资助项目(JZ007).

通讯作者: 王景全,男,副教授,博导. ORCID: 0000000266372910.     E-mail: wangjingquan@seu.edu.cn
作者简介: 王震(1990-),男,博士生,从事桥梁延性抗震及钢组结构等研究. ORCID: 0000000287764884. E-mail: sdkj199017@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

王震,王景全,戚家南. 钢管混凝土组合桥墩变形能力计算模型[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008973X.2016.05.008.

WANG Zhen,WANG Jing quan,QI Jia nan. Computing model for deformation capacity of concrete filled steel tube reinforced concrete bridge columns. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008973X.2016.05.008.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008973X.2016.05.008        http://www.zjujournals.com/eng/CN/Y2016/V50/I5/864

[1] 卓卫东, 范立础. 延性桥墩塑性铰区最低约束箍筋用量[J]. 土木工程学报, 2002, 35(5): 47-51.
ZHUO Weidong, FAN Lichu. Minimum quantity of confining lateral reinforcement in the potential plastic hinge regions of ductile bridge piers [J]. China Civil Engineering Journal, 2002, 35(5): 47-51.
[2] PARK R, PAULAY T. Reinforced concrete structures [M]. New York: John Wiley & Sons, 1975: 221-235.
[3] 李惠, 王震宇. 钢管高强混凝土叠合柱抗震性能与受力机理的试验研究[J]. 地震工程与工程振动, 1999, 19(3): 27-33.
LI Hui, WANG Zhenyu. Experimental research on mechanism and seismic performance of laminated column with steel tube filled with highstrength concrete [J]. Earrhquake Engineering and Engineering Vibration, 1999, 19(3): 27-33.
[4] 钱稼茹, 康洪震. 钢管高强混凝土组合柱抗震性能试验研究[J]. 建筑结构学报, 2009 (4): 85-93.
QIAN Jiaru, KANG Hongzhen. Experimental study on seismic behavior of highstrength concretefilled steel tube composite columns [J]. Journal of Building Structures, 2009, 30(4): 85-93.
[5] HAN L H, LIAO F Y, TAO Z, et al. Performance of concrete filled steel tube reinforced concrete columns subjected to cyclic bending [J]. Journal of Constructional Steel Research, 2009, 65(8): 1607-1616.
[6] 廖飞宇, 韩林海. 方形钢管混凝土叠合柱的力学性能研究[J]. 工程力学, 2010, 27(4): 153-162.
LIAO Feiyu, HAN Linhai. Performance of concretefilled steel tube reinforced concrete columns with square sections[J]. Engineering Mechanics, 2010, 27(4): 153-162.
[7] JI X, KANG H, CHEN X, et al. Seismic behavior and strength capacity of steel tube‐reinforced concrete composite columns [J]. Earthquake Engineering & Structural Dynamics, 2014, 43(4): 487-505.
[8] ZHANG J, XU S Y, TANG Y. Inelastic Displacement Demand of Bridge Columns Considering Shear–Flexure Interaction [J]. Earthquake Engineering & Structural Dynamics, 2011, 40(7): 731-748.
[9] MOSTAFAEI H, VECCHIO F J, KABEYASAWA T. Deformation capacity of reinforced concrete columns [J]. ACI Structural Journal, 2009, 106(2): 187-195.
[10] MOSTAFAEI H, KABEYASAWA T. Axialshearflexure interaction approach for reinforced concrete columns [J]. ACI Structural Journal, 2007, 104(2): 218-226.
[11] BAI Z Z, AU F T K. Ductility of symmetrically reinforced concrete columns [J]. Magazine of Concrete Research, 2009, 61(5): 345-357.
[12] 叶列平. 混凝土结构 [M]. 2版. 北京: 清华大学出版社, 2005: 1920.
[13] MANDER J B, PRIESTLEY M J N, PARK R. Theoretical stressstrain model for confined concrete [J]. Journal of Structural Engineering, 1988, 114(8): 1804-1826.
[14] 范立础, 卓卫东. 桥梁延性抗震设计[M]. 北京: 人民交通出版社, 2001: 152-153.
[15] 李秉南, 戴航, 张继文. 圆端形铁路桥墩变形能力分析方法研究[J]. 铁道工程学报, 2014, 31(3): 76-81.
LI Bingnan, DAI Hang, ZHANG Jiwen. Study on deformation capacity analysis method of roundended railway bridge piers [J]. Journal of Railway Engineering Society, 2014, 31(3): 76-81.
[16] MOSTAFAEI H, VECCHIO F J. Uniaxial shearflexure model for reinforced concrete elements [J]. Journal of Structural Engineering, 2008, 134(9): 15381547.
[17] 朱伟庆, 贾金青, 孟刚. 基于修正压力场理论的型钢超高强混凝土柱受剪承载力研究[J]. 建筑结构学报, 2013, 34(10): 101-107.
ZHU Weiqing, JIA Jinqing, MENG Gang. Shear strength of steel reinforced high strength concrete columns based on modified compression field theory [J]. Journal of Building Structures, 2013, 34(10): 101-107.
[18] SEZEN H, SETZLER E J. Reinforcement slip in reinforced concrete columns [J]. ACI Structural Journal, 2008, 105(3): 280-289.
[19] 艾庆华, 王东升, 李宏男, 等. 基于塑性铰模型的纵筋混凝土桥墩地震损伤评价[J]. 工程力学, 2009, 26(4): 158-166.
AI Qinghua, WANG Dongsheng, LI Hongnan, et al. Seismic damage evaluation of RC bridge columns based on plastic hinge model [J]. Engineering Mechanics, 2009, 26(4): 158-166.
[20] LI Y A, HUANG Y T, HWANG S J. Seismic response of reinforced concrete short columns failed in shear [J]. ACI Structural Journal, 2014, 111(4): 945-954.
[21] BRACHMANN I, BROWNING J A, MATAMOROS A. Driftdependent confinement requirements for reinforced concrete columns under cyclic loading [J]. ACI Structural Journal, 2004, 101(5): 669-677.
[22] SEZEN H, MOEHLEoehle J P. Seismic tests of concrete columns with light transverse reinforcement [J]. ACI Structural Journal, 2006, 103(6): 842-849.

[1] 董凯, 赖俊英, 钱晓倩, 詹树林, 阮方. 夏热冬冷地区居住建筑水平式外遮阳节能效果[J]. 浙江大学学报(工学版), 2016, 50(8): 1431-1437.
[2] 李佳琦, 范利武, 俞自涛. 超亲水表面在淬火冷却过程中的沸腾传热特性[J]. 浙江大学学报(工学版), 2016, 50(8): 1493-1498.
[3] 江衍铭, 张建全, 明焱. 集合神经网络的洪水预报[J]. 浙江大学学报(工学版), 2016, 50(8): 1471-1478.
[4] 钟崴, 彭梁, 周永刚, 徐剑, 从飞云. 基于小波包分析和支持向量机的锅炉结渣诊断[J]. 浙江大学学报(工学版), 2016, 50(8): 1499-1506.
[5] 夏玉峰, 任莉, 叶彩红, 王力. 基于RSM的立柱加强板定位布局多目标优化[J]. 浙江大学学报(工学版), 2016, 50(8): 1600-1607.
[6] 李林玉, 吴张华, 余国瑶, 戴巍, 罗二仓. 直线压缩机电声转换特性的实验[J]. 浙江大学学报(工学版), 2016, 50(8): 1529-1536.
[7] 曲巍崴, 唐伟, 毕运波, 李少波, 罗水均. 避免强迫装配和提升效率的预连接工艺规划[J]. 浙江大学学报(工学版), 2016, 50(8): 1561-1569.
[8] 胡小东, 顾临怡, 张范蒙. 应用于数字变量马达的高速开关阀[J]. 浙江大学学报(工学版), 2016, 50(8): 1551-1560.
[9] 杨姝, 刘国平, 亓昌, 王大志. 金属空心球梯度泡沫结构抗冲击特性仿真与优化[J]. 浙江大学学报(工学版), 2016, 50(8): 1593-1599.
[10] 杨章, 童根树, 张磊. 对称布置2根单侧加劲肋的有效刚度[J]. 浙江大学学报(工学版), 2016, 50(8): 1446-1455.
[11] 蒋翔, 童根树, 张磊. 耐火钢-混凝土组合梁抗火性能试验[J]. 浙江大学学报(工学版), 2016, 50(8): 1463-1470.
[12] 单华峰, 夏唐代, 俞峰, 胡军华, 潘金龙. 地下增层开挖托换桩的屈曲稳定临界荷载分析[J]. 浙江大学学报(工学版), 2016, 50(8): 1425-1430.
[13] 辜天来,张帅,郑耀. 咽式进气道/等直隔离段的反压特性[J]. 浙江大学学报(工学版), 2016, 50(7): 1418-1424.
[14] 程时伟, 陆煜华, 蔡红刚. 移动设备眼动跟踪技术[J]. 浙江大学学报(工学版), 2016, 50(6): 1160-1166.
[15] 郑成志, 高金良, 何文杰. 基于FastICA算法的物理漏损流量分析模型[J]. 浙江大学学报(工学版), 2016, 50(6): 1031-1039.