Please wait a minute...
浙江大学学报(工学版)
土木与交通工程     
地貌因素对垭口内风速影响的数值模拟
李正昊,楼文娟,章李刚,卞荣,段志勇
1. 浙江大学 结构工程研究所,浙江 杭州 310000;2. 国网浙江省电力公司经济技术研究院,浙江 杭州 310000
Numerical simulation of effects of topographic  factors on wind speed in col
LI Zhenghao,LOU Wenjuan,ZHANG Ligang,BIAN Rong,DUAN Zhiyong
1.Institute of Structural Engineering, Zhejiang University, Hangzhou 310000, China;
2. State Grid Zhejiang Economic Research Institute, Zhejiang University, Hangzhou 310000, China
 全文: PDF(1437 KB)   HTML
摘要:

为了研究地貌因素对垭口内平均风速的影响,在轴对称山丘模型的基础上引入山脉长度这一重要因素. 通过风洞试验手段验证数值模拟结果的有效性,选取最不利风向即正对垭口方向进行风场数值模拟.并研究了山顶距离和山脉坡度对加速效应的影响.结果表明,山脉长度对垭口内风加速比和加速区域大小均有显著的影响.当山脉长度介于1~3倍山高时,垭口内风加速效应明显且加速区域也较长;当山脉长度超过6倍山高时垭口内加速比和加速区域大小基本趋于定值;山顶间距越小风加速效应越大,但当间距小于2/3的山脉底部直径时,加速幅度降低;距山体表面50 m空间内山脉坡度越大,垭口内风加速效应越明显;综合研究结果,给出最不利的垭口地貌因素组合.

Abstract:

The length of mountains that was considered as a significant factor was introduced in the axisymmetric hill models to investigate the effects of topographic factors on wind speed in col. Wind tunnel test was conducted to verify the validity of the numerical simulation results, then the most unfavorable incoming winds direction that was rightly against the col was selected to carry out the numerical simulation. The effects of distance between two peaks and gradient of the mountain slope were also investigated. Results indicate that the length of mountain range has a significant impact on speedup ratio and acceleration region in the col. When the length of a mountain range is about 1 to 3 times the height of the mountain range, the wind acceleration effect is obvious and acceleration region in the col has its maximum range. The speedup ratio and size of acceleration region gradually reach a constant value as the length of mountains enlarges to 6 times the mountain height. The smaller the distance between the two peaks is, the higher the speed in col will be, but the wind acceleration amplitude decreases when the distance between two peaks is less than two thirds of the bottom diameter of a mountain. Wind acceleration tends to grow stronger with the increasing gradient of the mountain slope in the space up to 50 m above the surface of the mountain range. To sum up, a combination of topographic factors which are the most unfavorable is provided based on the results of the research.

出版日期: 2017-01-14
:  TU 973  
基金资助:

国家自然科学基金资助项目(51378468,51178424);国家电网公司研究资助项目(5211JY13002A).

通讯作者: 楼文娟,女,教授,博导. ORCID:0000000341345294.     E-mail: louwj@zju.edu.cn.
作者简介: 李正昊(1990-),男,硕士生,从事结构风工程等研究. ORCID:0000000198988974. E_mail:jndxlzh@163.com.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

李正昊,楼文娟,章李刚,卞荣,段志勇. 地貌因素对垭口内风速影响的数值模拟[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008973X.2016.05.006.

LI Zhenghao,LOU Wenjuan,ZHANG Ligang,BIAN Rong,DUAN Zhiyong. Numerical simulation of effects of topographic  factors on wind speed in col. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008973X.2016.05.006.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008973X.2016.05.006        http://www.zjujournals.com/eng/CN/Y2016/V50/I5/848

[1] 张相庭.地貌新分类及在高耸结构抗风分析中的应用研究[J].特种结构,1996 13(3):1114.
ZHANG Xiangting. New landscape classification and analysis of application in high structural for wind resistance [J]. Special Structures, 1996 13(3):1114.
[2] TAYLOR P A, LEE R J. Simple guidelines for estimating wind speed variations due to small scale topographic features [J]. Climatol Bull,1984,18(2):332.
[3] WENG W, TAYLOR P A, WALMSLEY J L. Guidelines for airflow over complex terrain: model developments [J]. Journal of Wind Engineering and Industrial Aerodynamics,2000,86(2):169186.
[4] TAYLOR P A. Turbulent boundarylayer flow over low and moderate slope hills [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1998, 7476(2):2547.
[5] BOWEN A J, LINDLEY D. A windtunnel investigation of the wind speed and turbulence characteristics close to the ground over various escarpment shapes [J]. BoundaryLayer Meteorology, 1977,12(3):259271.
[6] CAO S, TAMURA T. Experimental study on roughness effects on turbulent boundary layer flow over a twodimensional steep hill [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2006,94(1):119.
[7] LUBITZ W D, WHITE B R. Windtunnel and field investigation of the effect of local wind direction on speedup over hills [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2007, 95(8): 639661.
[8] 李正良, 孙毅, 魏奇科, 等. 山地平均风加速效应数值模拟[J]. 工程力学, 2010, 27(7): 3237.
LI Zhengliang,SUN Yi,WEI Qike,et al. Numerical simulation of mean velocity speedup effect in hilly terrain [J].EgineeringMechnics,2010,27(7):3237.
[9] 魏奇科, 李正良, 孙毅. 山地风加速效应的计算模型[J]. 华南理工大学学报 :自然科学版, 2010, 38(1):5458.
WEI Qike, LI Zhengliang, SUN Yi. Calculation model of speedup effect of wind velocity in hilly terrain[J].Journal of South China University of Technology :Natural Science Edition,2010, 38 (11): 5458.
[10] 张宏杰, 赵金飞, 蔡达章, 等. 垭口地貌要素对风速分布规律影响的风洞试验研究[J]. 实验流体力学, 2014, 28(4): 2530.
ZHANG Hongjie,ZHAO Jinfei, CAI Dazhang,et al.Wind tunnel test on the influenceof col features on wind speed distribution[J].Journal of Experiments in Fluid Mechanics,2014,28(4):2530.
[11] 王璋奇, 陈海波, 周邢银. 垭口型微地形对输电线路风载荷影响的分析[J]. 华北电力大学学报, 2008, 35(4): 2326.
WANG Zhangqi, CHEN Haibo,ZHOU Xingyin.Effects of yakou microrelief on the wind loading formulation for transmission line design[J].Journal of North China Electric Power University,2008,35(04):23-26.
[12] 李永乐, 蔡宪棠, 唐康, 等. 深切峡谷桥址区风场空间分布特性的数值模拟研究[J]. 土木工程学报, 2011, 44(2): 116-122.
LI Yongle,CAI Xiantang,TANG Kang,et al. Study of spatial distribution feature of wind fields over bridge site with a deepcutting gorge using numerical simulation [J]. China Civil Engineering Journal,2011,44(2):116-122.
[13] 陈政清,李春光,张志田.山区峡谷地带大跨度桥梁风场特性试验[J].实验流体力学,2008,22(3): 54-59.
CHEN Zhengqing,LI Chunguang,ZHANG Zhitian,et al. Model test study of wind field characteristics of longspan bridge site in mountainous valley terrain[J]. Journal of Experiments in Fluid Mechanics, 2008, 22(3):54-59.
[14] 庞加斌, 宋锦忠, 林志兴. 山区峡谷桥梁抗风设计风速的确定方法[J]. 中国公路学报, 2008, 21(5): 39-44.
PANG Jiabin, SONG Jinzhong, LIN Zhixing.Determination Method for windresistant design wind speed of mountainousvalley bridge[J]. China Journal of Highway and Transport, 2008, 21(5): 39-44.
[15] 王守礼,李家垣.微地形微气象对送电线路的影响[M].北京:中国电力出版社,1999:9-12.
[16] 郭文星. 复杂山地地形风场 CFD 多尺度数值模拟[D]. 哈尔滨:哈尔滨工业大学, 2010.
GUO Wenxing. CFD multiscale simulation of wind flow over hilly terrain[D]. Harbin :Harbin Institute of Technology,2010.
[17] 肖仪清, 李朝, 欧进萍, 等. 复杂地形风能评估的 CFD方法[J]. 华南理工大学学报:自然科学版, 2009,37 (9): 30-35.
XIAO Yiqing,LI Chao,OU Jinping,et al. Complicated topography and wind assessment with the method of CFD [J]. Journal of South China University of Technology : Natural Science Edition,2009, 37 (9): 30-35.
[18] 唐煜, 郑史雄, 赵博文, 等. 平衡大气边界层自保持问题的研究[J]. 工程力学, 2014,31(10): 129-135.
TANG Yu, ZHENG Shixiong, ZHAO Bowen ,et al. Numerical investigation on the selfsustaining of equilibrium atmosphere boundary layers [J]. EgineeringMechnics, 2014,31(10): 129-135.
[19] FRANKE J,HIRSCH C,JENSEN A G, et al.Recommendations on the use of CFD in wind engineering[C]∥ Proceedings of the International Conference on Urban Wind Engineering and Building Aerodynamics.SintGenesiusRode. Belgium: von Karman Institute,2004:14-25.
[20] RICHARDS P J, YOUNIS B A. Comments on ‘Prediction of windgenerated pressure distribution around buildings by Mathews E H [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1990, 34(1): 107-110.
[21] 曾锴. 计算风工程入口湍流条件改进与分离涡模拟[D].上海: 同济大学, 2007.
ZENG Kai. The improvement of inlet turbulence boundary condition in cwe and detaehed eddy simulation[D]. Shanghai∶Tongji University,2007.
[22] AIJ2004. Recommendations for loads on buildings[S]. Tokyo∶Architectural Institute of Japan, 2004.
[23] 陈平. 地形对山地丘陵风场影响的数值研究[D]. 杭州: 浙江大学, 2007.
CHEN Ping. Numerieal study of terrain influence on the airflow over hilly land[D]. Hangzhou:Zhejiang University,2007.

[1] 童根树,叶赟, 张磊. 3种理想化滞回模型下的弹塑性反应谱对比[J]. 浙江大学学报(工学版), 2014, 48(4): 693-703.
[2] 楼文娟, 姜雄, 夏亮, 金晓华, 王振华. 长横担输电塔风致薄弱部位及加强措施[J]. J4, 2013, 47(10): 1798-1784.
[3] 苏宁粉, 吕西林, 周颖, 齐虎. 某立面收进复杂高层建筑结构抗震性能评估[J]. J4, 2012, 46(10): 1893-1899.
[4] 章李刚, 楼文娟,申屠团兵. 不规则结构扭转风荷载[J]. J4, 2011, 45(6): 1094-1099.
[5] 彭智, 金南国, 金贤玉. 混凝土水分扩散表面因子理论模型与验证[J]. J4, 2010, 44(10): 2010-2015.
[6] 赵永峰, 童根树. 弹塑性屈服强度需求系数谱[J]. J4, 2009, 43(10): 1909-1914.
[7] 王昕, 楼文娟, 李宏男, 等. 雷暴冲击风作用下高耸输电塔风振响应[J]. J4, 2009, 43(8): 1520-1525.