Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (11): 2451-2458    DOI: 10.3785/j.issn.1008-973X.2025.11.024
生物医学工程     
基于非参数脑网络的帕金森亚型临床差异分析
杨硕1,2,3(),娄旭1,3,刘硕1,3,李佳睿1,3,王磊1,2,3,*()
1. 河北工业大学 生命科学与健康工程学院,天津 300130
2. 河北工业大学 省部共建电工装备可靠性与智能化国家重点实验室,天津 300130
3. 河北工业大学 天津市生物电工与智能健康重点实验室,天津 300130
Analysis of clinical difference in Parkinson’s disease subtype based on non-parametric brain network
Shuo YANG1,2,3(),Xu LOU1,3,Shuo LIU1,3,Jiarui LI1,3,Lei WANG1,2,3,*()
1. School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China
2. State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China
3. Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Hebei University of Technology, Tianjin 300130, China
 全文: PDF(1057 KB)   HTML
摘要:

通过非参数方法分析帕金森病不同亚型患者的静息态脑电的脑网络特征. 基于θ、个体化α(IAF)以及β频段的小波变换格兰杰因果构建非参数脑网络,提取杠杆中心性和效率密度,探讨其与临床表现的关联. 研究发现,姿势不稳和步态困难型(PIGD)在额叶和枕叶的杠杆中心性较高,体现出显著的信息处理优势;PIGD亚型在IAF频段的网络性能与精神和行为表现呈显著负相关. 震颤主导型(TD)的效率密度在全频段优于PIGD亚型,且在β频段,杠杆中心性与日常生活能力显著正相关. 不确定型(IT)在不同脑区和频段间的杠杆中心性和效率密度无明显差异,表现出较高的一致性. 结果表明,不同帕金森病亚型的临床表现差异与个体化脑电特征及脑网络活动的异常密切相关.

关键词: 脑网络脑电图特征提取杠杆中心性帕金森亚型    
Abstract:

The resting-state EEG and brain network characteristics of different Parkinson’s disease subtypes were analyzed using a non-parametric approach. Non-parametric brain networks were computed from wavelet-based Granger causality within θ, individualized α (IAF), and β bands. Leverage centrality and efficiency density were computed and discussed in relation to clinical manifestations. The postural-instability and gait-difficulty (PIGD) subtype exhibited elevated leverage centrality in frontal and occipital cortices, signifying enhanced information-processing efficiency. Network efficiency within the IAF band was significantly negatively correlated with psychiatric and behavioral manifestations in the PIGD subtype. The tremor-dominant (TD) subtype exhibited higher efficiency density than the PIGD subtype across all frequency bands. Leverage centrality was significantly positively correlated with activities of daily living within the β band. The indeterminate (IT) subtype showed no significant differences in leverage centrality or efficiency density across brain regions and frequency bands, indicating relatively high consistency. The observed clinical heterogeneity across Parkinson’s disease subtypes is closely associated with aberrant individualized EEG signature and abnormal brain network activity.

Key words: brain network    EEG    feature extraction    leverage centrality    Parkinson's disease subtype
收稿日期: 2025-02-12 出版日期: 2025-10-30
:  R 318  
基金资助: 国家自然科学基金资助项目(52320105008,51877067);河北省重点研发计划资助项目(21372002D).
通讯作者: 王磊     E-mail: sureyang@126.com;wanglei@hebut.edu.cn
作者简介: 杨硕(1979—),女,教授,从事生物电磁技术的研究. orcid.org/0000-0002-4986-4761. E-mail:sureyang@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
杨硕
娄旭
刘硕
李佳睿
王磊

引用本文:

杨硕,娄旭,刘硕,李佳睿,王磊. 基于非参数脑网络的帕金森亚型临床差异分析[J]. 浙江大学学报(工学版), 2025, 59(11): 2451-2458.

Shuo YANG,Xu LOU,Shuo LIU,Jiarui LI,Lei WANG. Analysis of clinical difference in Parkinson’s disease subtype based on non-parametric brain network. Journal of ZheJiang University (Engineering Science), 2025, 59(11): 2451-2458.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.11.024        https://www.zjujournals.com/eng/CN/Y2025/V59/I11/2451

亚型年龄受教育年龄Q
UPDRS-ⅠUPDRS-ⅡUPDRS-ⅢUPDRS-ⅣMMSEMoCA
TD64.20±4.5412.40±2.442.60±1.586.50±3.7818.20±11.944.10±2.0427.40±3.7524.30±7.54
PIGD65.60±4.0413.00±2.832.38±1.839.19±4.6918.81±13.285.00±3.3228.90±1.6427.43±2.11
IT63.38±3.9711.69±2.253.00±2.605.50±4.9312.57±7.483.86±3.1828.79±1.3727.43±2.78
p0.440.490.900.030.400.510.660.84
表 1  不同亚型PD患者的临床量表
图 1  帕金森病不同亚型的静息态EEG功率谱及个体化α频段峰值频率
图 2  质量指数
图 3  帕金森病亚型在不同频段下的效率密度差异
图 4  帕金森病不同亚型在各脑区和频段的杠杆中心性差异
图 5  临床量表和脑网络特征间的相关性
1 CHE N, OU R, LI C, et al Plasma GFAP as a prognostic biomarker of motor subtype in early Parkinson’s disease[J]. npj Parkinson's Disease, 2024, 10 (1): 48- 56
doi: 10.1038/s41531-024-00664-8
2 WVLLNER U, BORGHAMMER P, CHOE C, et al The heterogeneity of Parkinson’s disease[J]. Journal of Neural Transmission, 2023, 130 (6): 827- 838
doi: 10.1007/s00702-023-02635-4
3 BASAIA S, AGOSTA F, FRANCIA A, et al Cerebro-cerebellar motor networks in clinical subtypes of Parkinson’s disease[J]. npj Parkinson's Disease, 2022, 8 (1): 113- 123
doi: 10.1038/s41531-022-00377-w
4 DULSKI J, UITTI R J, BEASLEY A, et al Genetics of Parkinson's disease heterogeneity: a genome-wide association study of clinical subtypes[J]. Parkinsonism and Related Disorders, 2024, 119: 105935
doi: 10.1016/j.parkreldis.2023.105935
5 LI Y, ZENG Y, LIN M, et al β oscillations of dorsal STN as a potential biomarker in Parkinson’s disease motor subtypes: an exploratory study[J]. Brain Sciences, 2023, 13 (5): 737- 749
doi: 10.3390/brainsci13050737
6 GU S C, SHI R, GAO C, et al Autonomic function and motor subtypes in Parkinson’s disease: a multicentre cross-sectional study[J]. Scientific Reports, 2023, 13 (1): 14548
doi: 10.1038/s41598-023-41662-9
7 MARRAS C, CHAUDHURI K R, TITOVA N, et al Therapy of Parkinson’s disease subtypes[J]. Neurotherapeutics, 2020, 17 (4): 1366- 1377
doi: 10.1007/s13311-020-00894-7
8 CHU H Y, SMITH Y, LYTTON W W, et al Dysfunction of motor cortices in Parkinson’s disease[J]. Cerebral Cortex, 2024, 34 (7): bhae294
doi: 10.1093/cercor/bhae294
9 LING S, MURPHY A, FYSHE A Exploring temporal sensitivity in the brain using multi-timescale language models: an EEG decoding study[J]. Computational Linguistics, 2024, 50 (4): 1477- 1506
doi: 10.1162/coli_a_00533
10 李明, 段立娟, 王文健, 等 基于显著稀疏强关联的脑功能连接分类方法[J]. 浙江大学学报: 工学版, 2022, 56 (11): 2232- 2240
LI Ming, DUAN Lijuan, WANG Wenjian, et al Brain functional connections classification method based on significant sparse strong correlation[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (11): 2232- 2240
11 ALJALAL M, ALDOSARI S A, MOLINAS M, et al Detection of Parkinson’s disease from EEG signals using discrete wavelet transform, different entropy measures, and machine learning techniques[J]. Scientific Reports, 2022, 12 (1): 22547
doi: 10.1038/s41598-022-26644-7
12 YANG X, LI Z, BAI L, et al Association of plasma and electroencephalography markers with motor subtypes of Parkinson’s disease[J]. Frontiers in Aging Neuroscience, 2022, 14: 911221
doi: 10.3389/fnagi.2022.911221
13 ORCIOLI-SILVA D, VITÓRIO R, BERETTA V S, et al Is cortical activation during walking different between Parkinson’s disease motor subtypes?[J]. The Journals of Gerontology: Series A, 2021, 76 (4): 561- 567
doi: 10.1093/gerona/glaa174
14 BANGE M, GONZALEZ E G, HERZ D M, et al Subthalamic stimulation modulates context-dependent effects of beta bursts during fine motor control[J]. Nature Communications, 2024, 15 (1): 3166- 3181
doi: 10.1038/s41467-024-47555-3
15 MUKHTAR R, CHANG C Y, RAJA M A Z, et al Novel nonlinear fractional order Parkinson's disease model for brain electrical activity rhythms: Intelligent adaptive Bayesian networks[J]. Chaos, Solitons and Fractals, 2024, 180: 114557
doi: 10.1016/j.chaos.2024.114557
16 YI C, QIU Y, CHEN W, et al Constructing time-varying directed EEG network by multivariate nonparametric dynamical Granger causality[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2022, 30: 1412- 1421
doi: 10.1109/TNSRE.2022.3175483
17 WOLTERS A F, MICHIELSE S, KUIJF M L, et al Brain network characteristics and cognitive performance in motor subtypes of Parkinson's disease: a resting state fMRI study[J]. Parkinsonism and Related Disorders, 2022, 105 (10): 32- 38
18 CECCHETTI G, AGOSTA F, CANU E, et al Analysis of individual alpha frequency in a large cohort from a tertiary memory center[J]. European Journal of Neurology, 2024, 31 (10): e16424
doi: 10.1111/ene.16424
19 MURPHY M, CARRIÓN R E, RUBIO J, et al Peak alpha frequency and electroencephalographic microstates are correlated with aggression in schizophrenia[J]. Journal of Psychiatric Research, 2024, 175: 60- 67
doi: 10.1016/j.jpsychires.2024.04.051
20 NG A S L, TAN Y J, YONG A C W, et al Utility of plasma neurofilament light as a diagnostic and prognostic biomarker of the postural instability gait disorder motor subtype in early Parkinson’s disease[J]. Molecular Neurodegeneration, 2020, 15: 1- 8
doi: 10.1186/s13024-019-0350-4
21 ZHANG W, LING Y, CHEN Z, et al Wearable sensor-based quantitative gait analysis in Parkinson’s disease patients with different motor subtypes[J]. npj Digital Medicine, 2024, 7 (1): 169- 183
doi: 10.1038/s41746-024-01163-z
22 闫佳庆, 李丹, 邓金钊, 等 不同难度任务下自我调节机制对心理负荷水平的影响[J]. 电子与信息学报, 2023, 45 (8): 2780- 2787
YAN Jiaqing, LI Dan, DENG Jinzhao, et al Impact of self-regulation on mental workload under different difficulty tasks[J]. Journal of Electronics and Information Technology, 2023, 45 (8): 2780- 2787
doi: 10.11999/JEIT221260
23 MOKHTARINEJAD E, TAVAKOLI M, GHADERI A H Exploring the correlation and causation between α oscillations and one-second time perception through EEG and tACS[J]. Scientific Reports, 2024, 14 (1): 8035
doi: 10.1038/s41598-024-57715-6
24 FALLANI F D V, LATORA V, CHAVEZ M A topological criterion for filtering information in complex brain networks[J]. PLoS Computational Biology, 2017, 13 (1): 1- 18
25 SAAD J F, GRIFFITHS K R, KORGAONKAR M S A systematic review of imaging studies in the combined and inattentive subtypes of attention deficit hyperactivity disorder[J]. Frontiers in Integrative Neuroscience, 2020, 14: 1- 14
doi: 10.3389/fnint.2020.00001
26 李昕, 张晴, 张莹, 等 基于脑电图的帕金森轻度认知障碍功能网络特征分析[J]. 计量学报, 2024, 45 (1): 135- 144
LI Xin, ZHANG Qing, ZHANG Ying, et al Functional network characterization analysis of Parkinson’s mild cognitive impairment based on EEG[J]. Acta Metrologica Sinice, 2024, 45 (1): 135- 144
27 VISSANI M, PALMISANO C, VOLKMANN J, et al Impaired reach-to-grasp kinematics in parkinsonian patients relates to dopamine-dependent, subthalamic beta bursts[J]. npj Parkinson’s Disease, 2021, 7 (1): 53
doi: 10.1038/s41531-021-00187-6
28 ZHANG Y, ZHANG Z, DU F, et al Shared oscillatory mechanisms of alpha-band activity in prefrontal regions in eyes open and closed state using a portable EEG acquisition device[J]. Scientific Reports, 2024, 14 (1): 26719
doi: 10.1038/s41598-024-78173-0
29 GASSMANN L, GORDON P C, ZIEMANN U Assessing effective connectivity of the cerebellum with cerebral cortex using TMS-EEG[J]. Brain Stimulation, 2022, 15 (6): 1354- 1369
doi: 10.1016/j.brs.2022.09.013
30 FETTERHOFF D, COSTA M, HELLERSTEDT R, et al. Neuronal population representation of human emotional memory [EB/OL]. [2025-02-01]. https://www.cell.com/cell-reports/fulltext/S2211-1247(24)00399-1?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS2211124724003991%3Fshowall%3Dtrue.
[1] 周著国,鲁玉军,吕利叶. 基于改进YOLOv5s的印刷电路板缺陷检测算法[J]. 浙江大学学报(工学版), 2025, 59(8): 1608-1616.
[2] 付家瑞,李兆飞,周豪,黄惟. 基于Convnextv2与纹理边缘引导的伪装目标检测[J]. 浙江大学学报(工学版), 2025, 59(8): 1718-1726.
[3] 董镇滔,徐暟敏,万清颖,刘晓菲,申昊,李书涵,奇格奇. 基于交通事件短视频资源的多模态情绪特征分析[J]. 浙江大学学报(工学版), 2025, 59(4): 661-668.
[4] 梁礼明,龙鹏威,金家新,李仁杰,曾璐. 基于改进YOLOv8s的钢材表面缺陷检测算法[J]. 浙江大学学报(工学版), 2025, 59(3): 512-522.
[5] 傅幼萍,张航,厉梦菡,孟濬. 基于脉搏波信号多维度特征的身份识别[J]. 浙江大学学报(工学版), 2025, 59(3): 566-576.
[6] 王博特,王卿,刘强,金波. 基于多通道振动主元特征的风电机组叶片自监督异常识别方法[J]. 浙江大学学报(工学版), 2025, 59(3): 653-660.
[7] 李宜轩,李颖,肖倩,王灵月,尹宁,杨硕. 不同情绪错误记忆的脑电微状态功能网络分析[J]. 浙江大学学报(工学版), 2025, 59(1): 49-61.
[8] 林俊杰,朱雅光,刘春潮,刘昊洋. 面向移动作业的腿足机器人数字孪生系统[J]. 浙江大学学报(工学版), 2024, 58(9): 1956-1969.
[9] 王海军,王涛,俞慈君. 基于递归量化分析的CFRP超声检测缺陷识别方法[J]. 浙江大学学报(工学版), 2024, 58(8): 1604-1617.
[10] 韩康,战洪飞,余军合,王瑞. 基于空洞卷积和增强型多尺度特征自适应融合的滚动轴承故障诊断[J]. 浙江大学学报(工学版), 2024, 58(6): 1285-1295.
[11] 钟博,王鹏飞,王乙乔,王晓玲. 基于深度学习的EEG数据分析技术综述[J]. 浙江大学学报(工学版), 2024, 58(5): 879-890.
[12] 周逸凡,张灵维,周正东,蔡智,袁梦瑶,袁晓曦,杨泽毅. 基于注意力机制和深度学习的群体语言想象脑电信号分类[J]. 浙江大学学报(工学版), 2024, 58(12): 2540-2546.
[13] 罗钒睿,刘振宇,任佳辉,李笑宇,程阳. 基于改进卡尔曼滤波的轻量级激光惯性里程计[J]. 浙江大学学报(工学版), 2024, 58(11): 2280-2289.
[14] 张灵维,周正东,许云飞,王嘉文,吉文韬,宋泽峰. 基于特征融合的语言想象脑电信号分类[J]. 浙江大学学报(工学版), 2023, 57(4): 726-734.
[15] 蒋林,刘林锐,周安娜,韩璐,李平原. 基于运动预测的改进ORB-SLAM算法[J]. 浙江大学学报(工学版), 2023, 57(1): 170-177.