| 计算机技术 |
|
|
|
|
| 基于时空特征增强的单目标跟踪算法 |
顾磊( ),夏楠*( ),江佳鸿,廉筱峪 |
| 大连工业大学 信息科学与工程学院,辽宁 大连 116034 |
|
| Single object tracking algorithm based on spatio-temporal feature enhancement |
Lei GU( ),Nan XIA*( ),Jiahong JIANG,Xiaoyu LIAN |
| School of Information Science and Engineering, Dalian Polytechnic University, Dalian 116034, China |
引用本文:
顾磊,夏楠,江佳鸿,廉筱峪. 基于时空特征增强的单目标跟踪算法[J]. 浙江大学学报(工学版), 2025, 59(11): 2418-2429.
Lei GU,Nan XIA,Jiahong JIANG,Xiaoyu LIAN. Single object tracking algorithm based on spatio-temporal feature enhancement. Journal of ZheJiang University (Engineering Science), 2025, 59(11): 2418-2429.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.11.021
或
https://www.zjujournals.com/eng/CN/Y2025/V59/I11/2418
|
| 1 |
JAVED S, DANELLJAN M, KHAN F S, et al Visual object tracking with discriminative filters and Siamese networks: a survey and outlook[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45 (5): 6552- 6574
|
| 2 |
孙训红, 都海波, 陈维乐, 等 基于移动机器人机载视觉云台的有限时间目标跟踪控制[J]. 控制与决策, 2023, 38 (10): 2875- 2880 SUN Xunhong, DU Haibo, CHEN Weile, et al Finite-time target tracking control based on mobile robot’s onboard PanTilt-Zoom camera system[J]. Control and Decision, 2023, 38 (10): 2875- 2880
|
| 3 |
江佳鸿, 夏楠, 李长吾, 等 基于多尺度增量学习的单人体操动作中关键点检测方法[J]. 电子学报, 2024, 52 (5): 1730- 1742 JIANG Jiahong, XIA Nan, LI Changwu, et al Keypoint detection method for single person gymnastics actions based on multi-scale incremental learning[J]. Acta Electronica Sinica, 2024, 52 (5): 1730- 1742
|
| 4 |
MARVASTI-ZADEH S M, CHENG L, GHANEI-YAKHDAN H, et al Deep learning for visual tracking: a comprehensive survey[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23 (5): 3943- 3968
doi: 10.1109/TITS.2020.3046478
|
| 5 |
卢湖川, 李佩霞, 王栋 目标跟踪算法综述[J]. 模式识别与人工智能, 2018, 31 (1): 61- 76 LU Huchuan, LI Peixia, WANG Dong Visual object tracking: a survey[J]. Pattern Recognition and Artificial Intelligence, 2018, 31 (1): 61- 76
|
| 6 |
DU S, WANG S An overview of correlation-filter-based object tracking[J]. IEEE Transactions on Computational Social Systems, 2022, 9 (1): 18- 31
doi: 10.1109/TCSS.2021.3093298
|
| 7 |
张津浦, 王岳环 融合检测技术的孪生网络跟踪算法综述[J]. 红外与激光工程, 2022, 51 (10): 1- 14 ZHANG Jinpu, WANG Yuehuan A survey of Siamese networks tracking algorithm integrating detection technology[J]. Infrared and Laser Engineering, 2022, 51 (10): 1- 14
|
| 8 |
LI B, YAN J, WU W, et al. High performance visual tracking with Siamese region proposal network [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 8971–8980.
|
| 9 |
XU Y, WANG Z, LI Z, et al. SiamFC++: towards robust and accurate visual tracking with target estimation guidelines [C]// Proceedings of the AAAI Conference on Artificial Intelligence. New York: AAAI, 2020: 12549–12556.
|
| 10 |
CHEN D, TANG F, DONG W, et al SiamCPN: visual tracking with the Siamese center-prediction network[J]. Computational Visual Media, 2021, 7 (2): 253- 265
doi: 10.1007/s41095-021-0212-1
|
| 11 |
ZHANG L, GONZALEZ-GARCIA A, VAN DE WEIJER J, et al. Learning the model update for Siamese trackers [C]// IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 4009–4018.
|
| 12 |
SARIBAS H, CEVIKALP H, KÖPÜKLÜ O, et al TRAT: tracking by attention using spatio-temporal features[J]. Neurocomputing, 2022, 492 (1): 150- 161
|
| 13 |
MAYER C, DANELLJAN M, PANI PAUDEL D, et al. Learning target candidate association to keep track of what not to track [C]// IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 13424–13434.
|
| 14 |
王蒙蒙, 杨小倩, 刘勇 利用时空特征编码的单目标跟踪网络[J]. 中国图象图形学报, 2022, 27 (9): 2733- 2748 WANG Mengmeng, YANG Xiaoqian, LIU Yong A spatio-temporal encoded network for single object tracking[J]. Journal of Image and Graphics, 2022, 27 (9): 2733- 2748
doi: 10.11834/jig.211157
|
| 15 |
HAN K, WANG Y, CHEN H, et al A survey on vision Transformer[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45 (1): 87- 110
doi: 10.1109/TPAMI.2022.3152247
|
| 16 |
CHEN X, YAN B, ZHU J, et al. Transformer tracking [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 8122–8131.
|
| 17 |
YAN B, PENG H, FU J, et al. Learning spatio-temporal Transformer for visual tracking [C]// IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 10428–10437.
|
| 18 |
GAO S, ZHOU C, MA C, et al. AiATrack: attention in attention for Transformer visual tracking [C]// European Conference on Computer Vision. Tel Aviv: Springer, 2022: 146–164.
|
| 19 |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [C]// IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770–778.
|
| 20 |
WANG N, ZHOU W, WANG J, et al. Transformer meets tracker: exploiting temporal context for robust visual tracking [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 1571–1580.
|
| 21 |
LING L T, FAN H, ZHANG Z P, et al. SwinTrack: a simple and strong baseline for Transformer tracking [C]// Conference on Neural Information Processing Systems. New Orleans: [s. n.], 2022: 16743–16754.
|
| 22 |
侯志强, 杨晓麟, 马素刚, 等 基于特征增强和历史帧选择的Transformer视觉跟踪算法[J]. 控制与决策, 2024, 39 (10): 3506- 3512 HOU Zhiqiang, YANG Xiaolin, MA Sugang, et al Feature enhancement and history frame selection based Transformer visual tracking[J]. Control and Decision, 2024, 39 (10): 3506- 3512
|
| 23 |
CUI Y, JIANG C, WU G, et al MixFormer: end-to-end tracking with iterative mixed attention[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46 (6): 4129- 4146
doi: 10.1109/TPAMI.2024.3349519
|
| 24 |
LIU C, ZHAO J, BO C, et al LGTrack: exploiting local and global properties for robust visual tracking[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2024, 34 (9): 8161- 8171
doi: 10.1109/TCSVT.2024.3390054
|
| 25 |
SHI L, ZHONG B, LIANG Q, et al. Explicit visual prompts for visual object tracking [C]// Proceedings of the AAAI Conference on Artificial Intelligence. Vancouver: AAAI, 2024: 4838–4846.
|
| 26 |
YE B, CHANG H, MA B, et al. Joint feature learning and relation modeling for tracking: a one-stream framework [C]// European Conference on Computer Vision. Tel Aviv: Springer, 2022: 341–357.
|
| 27 |
WANG Y, DENG L, ZHENG Y, et al Temporal convolutional network with soft thresholding and attention mechanism for machinery prognostics[J]. Journal of Manufacturing Systems, 2021, 60 (1): 512- 526
|
| 28 |
FAN H, LIN L T, YANG F, et al. LaSOT: a high-quality benchmark for large-scale single object tracking [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 5369–5378.
|
| 29 |
HUANG L, ZHAO X, HUANG K GOT-10k: a large high-diversity benchmark for generic object tracking in the wild[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43 (5): 1562- 1577
doi: 10.1109/TPAMI.2019.2957464
|
| 30 |
CUI Y, ZENG C, ZHAO X, et al. SportsMOT: a large multi-object tracking dataset in multiple sports scenes [C]// IEEE/CVF International Conference on Computer Vision. Paris: IEEE, 2023: 9887–9897.
|
| 31 |
HE K, CHEN X, XIE S, et al. Masked autoencoders are scalable vision learners [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 15979–15988.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|