| 计算机技术 |
|
|
|
|
| 基于改进CenterNet算法的番茄叶片病害检测 |
李亚1( ),蒋晨1,王海瑞1,朱贵富2,3,*( ),胡灿1 |
1. 昆明理工大学 信息工程与自动化学院,云南 昆明 650504 2. 昆明理工大学 信息化建设管理中心,云南 昆明 650504 3. 昆明理工大学-曙光信息产业股份有限公司AI联合研究中心,云南 昆明 650504 |
|
| Tomato leaf disease detection based on improved CenterNet algorithm |
Ya LI1( ),Chen JIANG1,Hairui WANG1,Guifu ZHU2,3,*( ),Can HU1 |
1. Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650504, China 2. Information Construction Center, Kunming University of Science and Technology, Kunming 650504, China 3. Kunming University ofScience and Technology - Dawn Information Industry Limited Company AI Joint Research Center, Kunming 650504, China |
引用本文:
李亚,蒋晨,王海瑞,朱贵富,胡灿. 基于改进CenterNet算法的番茄叶片病害检测[J]. 浙江大学学报(工学版), 2025, 59(11): 2370-2378.
Ya LI,Chen JIANG,Hairui WANG,Guifu ZHU,Can HU. Tomato leaf disease detection based on improved CenterNet algorithm. Journal of ZheJiang University (Engineering Science), 2025, 59(11): 2370-2378.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.11.016
或
https://www.zjujournals.com/eng/CN/Y2025/V59/I11/2370
|
| 1 |
王会征, 孙良晨, 李新龙, 等 基于改进YOLOv7-tiny的番茄叶片病虫害检测方法[J]. 农业工程学报, 2024, 40 (10): 194- 202 WANG Huizheng, SUN Liangchen, LI Xinlong, et al Tomato leaf disease and pest detection method based on improved YOLOv7-tiny[J]. Transactions of the Chinese Society of Agricultural Engineering, 2024, 40 (10): 194- 202
|
| 2 |
刘佳明, 张欣, 陈孝玉龙, 等 基于改进MobileNetV2的番茄病害识别研究[J]. 南京农业大学学报, 2025, 48 (3): 724- 733 LIU Jiaming, ZHANG Xin, CHEN Xiaoyulong, et al Research on tomato disease recognition based on improved MobileNetV2[J]. Journal of Nanjing Agricultural University, 2025, 48 (3): 724- 733
|
| 3 |
李健, 王晨, 马振宇, 等. MobileNet-CAL: 基于迁移学习和注意力机制的番茄病虫害分类方法[EB/OL]. [2025-08-22]. https://doi.org/10.13229/j.cnki.jdxbgxb.20230828.
|
| 4 |
嵇春梅, 周鑫志, 叶烨华. 自然场景下的轻量化番茄病害检测模型[EB/OL]. [2025-08-22]. https://link.cnki.net/urlid/32.1148.s.20241009.0833.002.
|
| 5 |
刘拥民, 刘翰林, 石婷婷, 等 一种优化的Swin Transformer番茄叶片病害识别方法[J]. 中国农业大学学报, 2023, 28 (4): 80- 90 LIU Yongmin, LIU Hanlin, SH Tingting, et al An optimized Swin Transformer-based method for tomato leaf disease recognition[J]. Journal of China Agricultural University, 2023, 28 (4): 80- 90
|
| 6 |
王海瑞, 赵江河, 吴蕾, 等 针对CenterNet缺点的安全帽检测算法改进[J]. 湖南大学学报: 自然科学版, 2023, 50 (8): 125- 133 WANG Hairui, ZHAO Jianghe, WU Lei, et al Improvement of a hard hat detection algorithm addressing the shortcomings of CenterNet[J]. Journal of Hunan University: Natural Sciences, 2023, 50 (8): 125- 133
|
| 7 |
BRAHIMI M, BOUKHALFA K, MOUSSAOUI A Deep learning for tomato diseases: classification and symptoms visualization[J]. Applied Artificial Intelligence, 2017, 31 (4): 299- 315
|
| 8 |
PARK J, WOO S, LEE J, et al A simple and light-weight attention module for convolutional neural networks[J]. International Journal of Computer Vision, 2020, 128 (4): 783- 798
doi: 10.1007/s11263-019-01283-0
|
| 9 |
LIU S, HUANG D, WANG Y. Receptive field block net for accurate and fast object detection [C]//Proceedings of the European Conference on Computer Vision. Munich: Springer, 2018: 385−400.
|
| 10 |
DUTA I, LIU L, ZHU F, et al. Pyramidal convolution: rethinking convolutional neural networks for visual recognition [EB/OL]. (2021-09-28). https://arxiv.org/abs/2006.11538.
|
| 11 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7132−7141.
|
| 12 |
WOO S, PARK J, LEE J, et al. CBAM: convolutional block attention module [C]//European Conference on Computer Vision. Cham: Springer, 2018: 3−19.
|
| 13 |
ZHANG H, GOODFELLOW I, METAXAS D, et al. Self-attention with efficient local attention [EB/OL]. (2021-09-28). https://arxiv.org/abs/1907.09190.
|
| 14 |
DUAN K, BAI S, XIE L, et al. CenterNet: keypoint triplets for object detection [C]//IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 6568−6577.
|
| 15 |
WANG C, BOCHKOVSKIY A, LIAO H. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors [C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 7464−7475.
|
| 16 |
刘鹏, 张天翼, 冉鑫, 等. 基于PBM-YOLOv8的水稻病虫害检测[J]. 农业工程学报, 2024, 40(20): 147−156. LIU Peng, ZHANG Tianyi, RAN Xin, et al. Detection of rice diseases and pests based on PBM-YOLOv8 [J/OL]. Transactions of the Chinese Society of Agricultural Engineering, 2024, 40(20): 147−156.
|
| 17 |
BATTULA B, ASHOK B, SPICA G, et al Parkinson's disease detection using modified ResNext deep learning model from brain MRI images[J]. Soft Computing, 2023, 27 (16): 11905- 11914
doi: 10.1007/s00500-023-08535-9
|
| 18 |
ZHAO Y, LV W, XU S, et al. DETRs beat YOLOs on real-time object detection [EB/OL]. (2023-04-17). https://arxiv.org/abs/2304.08069.
|
| 19 |
宋耀莲, 王粲, 李大焱, 等 基于改进YOLOv5s的无人机小目标检测算法[J]. 浙江大学学报: 工学版, 2024, 58 (12): 2417- 2426 SONG Yaolian, WANG Can, LI Dayan, et al An improved YOLOv5s-based drone small target detection algorithm[J]. Journal of Zhejiang University: Engineering Science, 2024, 58 (12): 2417- 2426
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|