Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (11): 2370-2378    DOI: 10.3785/j.issn.1008-973X.2025.11.016
计算机技术     
基于改进CenterNet算法的番茄叶片病害检测
李亚1(),蒋晨1,王海瑞1,朱贵富2,3,*(),胡灿1
1. 昆明理工大学 信息工程与自动化学院,云南 昆明 650504
2. 昆明理工大学 信息化建设管理中心,云南 昆明 650504
3. 昆明理工大学-曙光信息产业股份有限公司AI联合研究中心,云南 昆明 650504
Tomato leaf disease detection based on improved CenterNet algorithm
Ya LI1(),Chen JIANG1,Hairui WANG1,Guifu ZHU2,3,*(),Can HU1
1. Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650504, China
2. Information Construction Center, Kunming University of Science and Technology, Kunming 650504, China
3. Kunming University ofScience and Technology - Dawn Information Industry Limited Company AI Joint Research Center, Kunming 650504, China
 全文: PDF(3346 KB)   HTML
摘要:

为了解决在传统番茄叶片病害检测中出现的误检和漏检现象,提出基于改进CenterNet算法的番茄叶片病害检测模型. 构建融合注意力机制的特征融合模块,增强模型的跨尺度特征融合能力. 在骨干网络中加入多分支卷积模块RFB,扩大感受野,加强对目标特征的提取能力. 在骨干网络中引入金字塔卷积PyConv,通过计算不同尺度的感受野来强化多尺度特征的提取,减少信息损失. 设计剪枝优化策略,减少引入模块给模型参数量和计算量带来的影响. 试验结果显示,改进后模型的准确率、召回率、mAP50和mAP50:95达到96.3%、80.2%、91.4%和78.7%. 利用提出的模型,能够有效地提升番茄叶片病害检测的准确性,模型具有良好的泛化性.

关键词: 番茄叶片病害CenterNet特征融合金字塔卷积多分支卷积    
Abstract:

A tomato leaf disease detection model based on the improved CenterNet algorithm was proposed in order to address the false detection and missed detection phenomena in traditional tomato leaf disease detection. A feature fusion module that integrated the attention mechanism was constructed in order to enhance the model's cross-scale feature fusion capability. The multi-branch convolutional module RFB was added to the backbone network in order to expand the receptive field and enhance the ability to extract target features. The pyramid convolution PyConv was introduced into the backbone network to enhance the extraction of multi-scale features by calculating receptive fields of different scales and reduce information loss. Pruning optimization strategies were designed in order to reduce the impact of introducing modules on the number of model parameters and computational load. The test results showed that the accuracy rate, recall rate, mAP50 and mAP50:95 of the improved model reached 96.3%, 80.2%, 91.4% and 78.7% respectively. The proposed model can effectively improve the accuracy of tomato leaf disease detection, and the model has good generalization.

Key words: tomato leaf disease    CenterNet    feature fusion    pyramid convolution    multi-branch convolution
收稿日期: 2024-11-15 出版日期: 2025-10-30
:  TP 391  
基金资助: 国家自然科学基金资助项目(61863016).
通讯作者: 朱贵富     E-mail: 59515091@qq.com;zhuguifu@kust.edu.cn
作者简介: 李亚(1978—),女,副教授,从事计算机应用、计算机控制、大数据技术的研究. orcid.org/0009-0007-6105-5610. E-mail: 59515091@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
李亚
蒋晨
王海瑞
朱贵富
胡灿

引用本文:

李亚,蒋晨,王海瑞,朱贵富,胡灿. 基于改进CenterNet算法的番茄叶片病害检测[J]. 浙江大学学报(工学版), 2025, 59(11): 2370-2378.

Ya LI,Chen JIANG,Hairui WANG,Guifu ZHU,Can HU. Tomato leaf disease detection based on improved CenterNet algorithm. Journal of ZheJiang University (Engineering Science), 2025, 59(11): 2370-2378.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.11.016        https://www.zjujournals.com/eng/CN/Y2025/V59/I11/2370

图 1  番茄叶片病害
图 2  CenterNet的结构图
图 3  修改后的CenterNet网络结构
图 4  BAM流程结构图
图 5  RFB结构图
图 6  PyConv的结构图
模型
Model
P/%R/%mAP50/
%
mAP50:95/%F1
CenterNet95.561.082.069.80.71
CenterNet+FPN96.367.582.769.70.78
CenterNet+FPN+BAM96.968.685.072.10.79
CenterNet+FPN+SE96.166.479.267.50.66
CenterNet+FPN+CBAM97.058.281.669.30.68
CenterNet+FPN+ELA95.364.382.370.20.75
表 1  融合注意力机制的特征融合模块消融实验
实验编号
FPNBAMRFBPyConv剪枝P/%R/%mAP50/%mAP50:95/%F1Np/106FLOPs/109
1×××××95.561.082.069.80.7132.6770.22
2××××96.367.582.769.70.7832.6770.22
3×××96.968.685.072.10.7933.9370.58
4××97.070.385.673.20.8140.83103.08
5×96.976.989.076.80.8540.19102.74
696.380.291.478.70.8730.8084.37
表 2  不同改进点组合的消融实验
图 7  消融实验的模型损失曲线
图 8  改进前、后生成的热力图对比
图 9  改进前、后病害检测的可视化对比
模型P/
%
R/
%
mAP50/
%
mAP50:95/
%
F1
CenterNet95.561.082.069.80.71
YOLOv586.281.289.871.20.83
YOLOv784.381.589.073.10.83
YOLOv885.079.488.674.60.82
ResNxt86.679.388.471.20.83
RT-DETR85.673.582.569.20.79
本文算法96.380.291.478.70.87
表 3  不同网络模型的性能对比试验
模型数据集P/
%
R/
%
mAP50/
%
F1
CenterNet草莓病害94.479.889.30.86
CenterNetCCTSDB交通标志93.778.287.90.85
本文算法草莓病害95.387.191.80.91
本文算法CCTSDB交通标志94.386.990.30.90
表 4  模型在不同数据集上的检测结果
1 王会征, 孙良晨, 李新龙, 等 基于改进YOLOv7-tiny的番茄叶片病虫害检测方法[J]. 农业工程学报, 2024, 40 (10): 194- 202
WANG Huizheng, SUN Liangchen, LI Xinlong, et al Tomato leaf disease and pest detection method based on improved YOLOv7-tiny[J]. Transactions of the Chinese Society of Agricultural Engineering, 2024, 40 (10): 194- 202
2 刘佳明, 张欣, 陈孝玉龙, 等 基于改进MobileNetV2的番茄病害识别研究[J]. 南京农业大学学报, 2025, 48 (3): 724- 733
LIU Jiaming, ZHANG Xin, CHEN Xiaoyulong, et al Research on tomato disease recognition based on improved MobileNetV2[J]. Journal of Nanjing Agricultural University, 2025, 48 (3): 724- 733
3 李健, 王晨, 马振宇, 等. MobileNet-CAL: 基于迁移学习和注意力机制的番茄病虫害分类方法[EB/OL]. [2025-08-22]. https://doi.org/10.13229/j.cnki.jdxbgxb.20230828.
4 嵇春梅, 周鑫志, 叶烨华. 自然场景下的轻量化番茄病害检测模型[EB/OL]. [2025-08-22]. https://link.cnki.net/urlid/32.1148.s.20241009.0833.002.
5 刘拥民, 刘翰林, 石婷婷, 等 一种优化的Swin Transformer番茄叶片病害识别方法[J]. 中国农业大学学报, 2023, 28 (4): 80- 90
LIU Yongmin, LIU Hanlin, SH Tingting, et al An optimized Swin Transformer-based method for tomato leaf disease recognition[J]. Journal of China Agricultural University, 2023, 28 (4): 80- 90
6 王海瑞, 赵江河, 吴蕾, 等 针对CenterNet缺点的安全帽检测算法改进[J]. 湖南大学学报: 自然科学版, 2023, 50 (8): 125- 133
WANG Hairui, ZHAO Jianghe, WU Lei, et al Improvement of a hard hat detection algorithm addressing the shortcomings of CenterNet[J]. Journal of Hunan University: Natural Sciences, 2023, 50 (8): 125- 133
7 BRAHIMI M, BOUKHALFA K, MOUSSAOUI A Deep learning for tomato diseases: classification and symptoms visualization[J]. Applied Artificial Intelligence, 2017, 31 (4): 299- 315
8 PARK J, WOO S, LEE J, et al A simple and light-weight attention module for convolutional neural networks[J]. International Journal of Computer Vision, 2020, 128 (4): 783- 798
doi: 10.1007/s11263-019-01283-0
9 LIU S, HUANG D, WANG Y. Receptive field block net for accurate and fast object detection [C]//Proceedings of the European Conference on Computer Vision. Munich: Springer, 2018: 385−400.
10 DUTA I, LIU L, ZHU F, et al. Pyramidal convolution: rethinking convolutional neural networks for visual recognition [EB/OL]. (2021-09-28). https://arxiv.org/abs/2006.11538.
11 HU J, SHEN L, SUN G. Squeeze-and-excitation networks [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7132−7141.
12 WOO S, PARK J, LEE J, et al. CBAM: convolutional block attention module [C]//European Conference on Computer Vision. Cham: Springer, 2018: 3−19.
13 ZHANG H, GOODFELLOW I, METAXAS D, et al. Self-attention with efficient local attention [EB/OL]. (2021-09-28). https://arxiv.org/abs/1907.09190.
14 DUAN K, BAI S, XIE L, et al. CenterNet: keypoint triplets for object detection [C]//IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 6568−6577.
15 WANG C, BOCHKOVSKIY A, LIAO H. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors [C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 7464−7475.
16 刘鹏, 张天翼, 冉鑫, 等. 基于PBM-YOLOv8的水稻病虫害检测[J]. 农业工程学报, 2024, 40(20): 147−156.
LIU Peng, ZHANG Tianyi, RAN Xin, et al. Detection of rice diseases and pests based on PBM-YOLOv8 [J/OL]. Transactions of the Chinese Society of Agricultural Engineering, 2024, 40(20): 147−156.
17 BATTULA B, ASHOK B, SPICA G, et al Parkinson's disease detection using modified ResNext deep learning model from brain MRI images[J]. Soft Computing, 2023, 27 (16): 11905- 11914
doi: 10.1007/s00500-023-08535-9
18 ZHAO Y, LV W, XU S, et al. DETRs beat YOLOs on real-time object detection [EB/OL]. (2023-04-17). https://arxiv.org/abs/2304.08069.
19 宋耀莲, 王粲, 李大焱, 等 基于改进YOLOv5s的无人机小目标检测算法[J]. 浙江大学学报: 工学版, 2024, 58 (12): 2417- 2426
SONG Yaolian, WANG Can, LI Dayan, et al An improved YOLOv5s-based drone small target detection algorithm[J]. Journal of Zhejiang University: Engineering Science, 2024, 58 (12): 2417- 2426
[1] 程文鑫,闫光辉,常文文,吴佰靖,黄亚宁. 基于通道加权的多模态特征融合用于EEG疲劳驾驶检测[J]. 浙江大学学报(工学版), 2025, 59(9): 1775-1783.
[2] 董超群,汪战,廖平,谢帅,荣玉杰,周靖淞. 轻量化YOLOv5s-OCG的轨枕裂纹检测算法[J]. 浙江大学学报(工学版), 2025, 59(9): 1838-1845.
[3] 周著国,鲁玉军,吕利叶. 基于改进YOLOv5s的印刷电路板缺陷检测算法[J]. 浙江大学学报(工学版), 2025, 59(8): 1608-1616.
[4] 付家瑞,李兆飞,周豪,黄惟. 基于Convnextv2与纹理边缘引导的伪装目标检测[J]. 浙江大学学报(工学版), 2025, 59(8): 1718-1726.
[5] 李沈崇,曾新华,林传渠. 基于轴向注意力的多任务自动驾驶环境感知算法[J]. 浙江大学学报(工学版), 2025, 59(4): 769-777.
[6] 张振利,胡新凯,李凡,冯志成,陈智超. 基于CNN和Efficient Transformer的多尺度遥感图像语义分割算法[J]. 浙江大学学报(工学版), 2025, 59(4): 778-786.
[7] 刘登峰,郭文静,陈世海. 基于内容引导注意力的车道线检测网络[J]. 浙江大学学报(工学版), 2025, 59(3): 451-459.
[8] 何永福,谢世维,于佳禄,陈思宇. 考虑跨层特征融合的抛洒风险车辆检测方法[J]. 浙江大学学报(工学版), 2025, 59(2): 300-309.
[9] 肖刚,卢大鹏,郑文博,程振波,张元鸣. 基于时空图注意力网络的多变量时序数据异常检测方法[J]. 浙江大学学报(工学版), 2025, 59(10): 2134-2143.
[10] 刘欢,李云红,张蕾涛,郭越,苏雪平,朱耀麟,侯乐乐. 基于MA-ConvNext网络和分步关系知识蒸馏的苹果叶片病害识别[J]. 浙江大学学报(工学版), 2024, 58(9): 1757-1767.
[11] 刘毅,陈一丹,高琳,洪姣. 基于多尺度特征融合的轻量化道路提取模型[J]. 浙江大学学报(工学版), 2024, 58(5): 951-959.
[12] 曹寅,秦俊平,高彤,马千里,任家琪. 基于生成对抗网络的文本两阶段生成高质量图像方法[J]. 浙江大学学报(工学版), 2024, 58(4): 674-683.
[13] 张会娟,李坤鹏,姬淼鑫,刘振江,刘建娟,张弛. 基于空间相关性增强的无人机检测算法[J]. 浙江大学学报(工学版), 2024, 58(3): 468-479.
[14] 钱庆杰,余军合,战洪飞,王瑞,胡健. 基于DL-BiGRU多特征融合的注塑件尺寸预测方法[J]. 浙江大学学报(工学版), 2024, 58(3): 646-654.
[15] 孟月波,王博,刘光辉. 多尺度上下文引导特征消除的古塔图像分类[J]. 浙江大学学报(工学版), 2024, 58(12): 2489-2499.