| 交通工程、土木工程 |
|
|
|
|
| 基于多源数据的个体活动序列多步预测 |
疏阳1( ),孙轶琳1,2,*( ),梅振宇1,张逸敏2,黄毅方2 |
1. 浙江大学 建筑工程学院,浙江 杭州 310058 2. 浙江大学工程师学院,浙江 杭州 310015 |
|
| Multi-step prediction of individual activity sequence based on multi-source data |
Yang SHU1( ),Yilin SUN1,2,*( ),Zhenyu MEI1,Yimin ZHANG2,Yifang HUANG2 |
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China 2. Polytechnic Institute, Zhejiang University, Hangzhou 310015, China |
引用本文:
疏阳,孙轶琳,梅振宇,张逸敏,黄毅方. 基于多源数据的个体活动序列多步预测[J]. 浙江大学学报(工学版), 2025, 59(11): 2317-2325.
Yang SHU,Yilin SUN,Zhenyu MEI,Yimin ZHANG,Yifang HUANG. Multi-step prediction of individual activity sequence based on multi-source data. Journal of ZheJiang University (Engineering Science), 2025, 59(11): 2317-2325.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.11.011
或
https://www.zjujournals.com/eng/CN/Y2025/V59/I11/2317
|
| 1 |
ERMAGUN A, FAN Y, WOLFSON J, et al Real-time trip purpose prediction using online location-based search and discovery services[J]. Transportation Research Part C: Emerging Technologies, 2017, 77 (4): 96- 112
|
| 2 |
HADJIDIMITRIOU N S, CANTELMO G, ANTONIOU C Machine learning for activity pattern detection[J]. Journal of Intelligent Transportation Systems, 2023, 27 (6): 834- 848
doi: 10.1080/15472450.2022.2084336
|
| 3 |
LI W, ZHANG Y, CHEN Y, et al Multi-day activity pattern recognition based on semantic embeddings of activity chains[J]. Travel Behaviour and Society, 2024, 34 (1): 100682
|
| 4 |
ALEXANDER L, JIANG S, MURGA M, et al Origin–destination trips by purpose and time of day inferred from mobile phone data[J]. Transportation Research Part C: Emerging Technologies, 2015, 58 (9): 240- 250
|
| 5 |
HUANG L, LI Q, YUE Y. Activity identification from GPS trajectories using spatial temporal POIs’ attractiveness [C]//Proceedings of the 2nd ACM SIGSPATIAL International Workshop on Location based Social Networks. San Jose: ACM, 2010: 27-30.
|
| 6 |
CHEN C, JIAO S, ZHANG S, et al TripImputor: real-time imputing taxi trip purpose leveraging multisourced urban data[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19 (10): 3292- 3304
doi: 10.1109/TITS.2017.2771231
|
| 7 |
林楠. 基于大规模手机定位数据的居民活动链挖掘方法[D]. 深圳: 中国科学院大学(中国科学院深圳先进技术研究院), 2018. LIN Nan. Mining methods for residents' activity chains based on large-scale mobile phone positioning data [D]. Shenzhen: University of Chinese Academy of Sciences (Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences), 2018.
|
| 8 |
ZHAO X, LI Z, ZHANG Y, et al Discover trip purposes from cellular network data with topic modeling[J]. IEEE Intelligent Transportation Systems Magazine, 2020, 14 (4): 37- 46
|
| 9 |
LI Z, XIONG G, WEI Z, et al Trip purposes mining from mobile signaling data[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 23 (8): 13190- 13202
|
| 10 |
YANG C, YE W, ZHU R, et al Resident activity pattern recognition and comparison of six Sino-American metropolises[J]. IET Intelligent Transport Systems, 2019, 13 (3): 443- 452
doi: 10.1049/iet-its.2018.5246
|
| 11 |
HUANG L, XIA F, CHEN H, et al Reconstructing human activities via coupling mobile phone data with location-based social networks[J]. Travel Behaviour and Society, 2023, 33 (4): 100606
|
| 12 |
GOULET-LANGLOIS G, KOUTSOPOULOS H N, ZHAO J Inferring patterns in the multi-week activity sequences of public transport users[J]. Transportation Research Part C: Emerging Technologies, 2016, 64 (3): 1- 16
|
| 13 |
ZHAI W, BAI X, PENG Z R, et al From edit distance to augmented space-time-weighted edit distance: detecting and clustering patterns of human activities in Puget Sound region[J]. Journal of Transport Geography, 2019, 78 (7): 41- 55
|
| 14 |
JAHANSHAHI H, BAYDOGAN M G nTreeClus: a tree-based sequence encoder for clustering categorical series[J]. Neurocomputing, 2022, 494 (7): 224- 241
|
| 15 |
WANG Y, ZHANG D, LIU Y, et al Enhancing transportation systems via deep learning: a survey[J]. Transportation Research Part C: Emerging Technologies, 2019, 99 (2): 144- 163
|
| 16 |
CONNOR J, MARTIN R, ATLAS L Recurrent neural networks and robust time series prediction[J]. IEEE Transactions on Neural Networks, 1994, 5 (2): 240- 254
doi: 10.1109/72.279188
|
| 17 |
CHO K, VAN M B, GULCERHRE C, et al. Learning phrase representations using RNN encoder -decoder for statistical machine translation [C]//MOSCHITTI A, PANG B, DAELEMANS W. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Doha: ACL, 2014: 1724-1734.
|
| 18 |
HOCHREITER S, SCHMIDHUBER J Long short-term memory[J]. Neural Computation, 1997, 9 (8): 1735- 1780
doi: 10.1162/neco.1997.9.8.1735
|
| 19 |
翁小雄, 任杰, 覃镇林, 等 基于深度注意力模型的个体出行多步预测研究[J]. 重庆交通大学学报: 自然科学版, 2022, 41 (10): 35 WENG Xiaoxiong, REN Jie, QIN Zhenlin, et al Multi-step prediction of individual travel based on deep attention model[J]. Journal of Chongqing Jiaotong University: Natural Science, 2022, 41 (10): 35
|
| 20 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach: Curran Associates Inc. , 2017: 6000-6010.
|
| 21 |
LIM B, ARIK S O, LOEFF N, et al Temporal fusion transformers for interpretable multi-horizon time series forecasting[J]. International Journal of Forecasting, 2021, 37 (4): 1748- 1764
doi: 10.1016/j.ijforecast.2021.03.012
|
| 22 |
高海龙, 徐一博, 刘坤, 等 基于多源数据融合的高速公路路网短时交通流参数实时预测[J]. 吉林大学学报: 工学版, 2024, 54: 155- 161 GAO Hailong, XU Yibo, LIU Kun, et al Real-time prediction of short-term traffic flow parameters in expressway network based on multi-source data fusion[J]. Journal of Jilin University: Engineering and Technology Edition, 2024, 54: 155- 161
|
| 23 |
LIU Y, LIU Z, JIA R DeepPF: a deep learning based architecture for metro passenger flow prediction[J]. Transportation Research Part C: Emerging Technologies, 2019, 101 (4): 18- 34
|
| 24 |
YANG Y, XIONG C, ZHUO J, et al Detecting home and work locations from mobile phone cellular signaling data[J]. Mobile Information Systems, 2021, 2021 (1): 5546329
|
| 25 |
YANG C, ZHANG Y, ZHAN X, et al Fusing mobile phone and travel survey data to model urban activity dynamics[J]. Journal of Advanced Transportation, 2020, 2020 (1): 5321385
|
| 26 |
孙石磊, 王超, 赵元棣 基于轮廓系数的参数无关空中交通轨迹聚类方法[J]. 计算机应用, 2019, 39 (11): 3293- 3297 SUN Shilei, WANG Chao, ZHAO Yuandi Parameter-free air traffic trajectory clustering method based on silhouette coefficient[J]. Computer Applications, 2019, 39 (11): 3293- 3297
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|