Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (11): 2293-2299    DOI: 10.3785/j.issn.1008-973X.2025.11.008
机械工程、能源工程     
车用动力铝-空气燃料电池的产热行为实验
唐晓丹1(),盛雷2,*(),张振东2
1. 上海科学技术职业学院 智能制造工程学院,上海 201800
2. 上海理工大学 机械工程学院,上海 200093
Experiment of heat generation behavior of automotive power aluminum-air fuel battery
Xiaodan TANG1(),Lei SHENG2,*(),Zhendong ZHANG2
1. School of Intelligent Manufacturing Engineering, Shanghai Vocational College of Science and Technology, Shanghai 201800, China
2. School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
 全文: PDF(1868 KB)   HTML
摘要:

针对车用动力铝-空气燃料电池的产热行为表征问题,提出面向该型电池的原位热表征理论模型和方法. 研究工作温度、电解液浓度和电流密度对电池放电升温、热量损失、产热率和放电效率的影响机制. 结果表明,铝-空气电池的升温幅度、热损和发热率随着工作温度的降低和电解液浓度的增大而增大. 电池的发热率随着放电时间的增加而逐渐降低,放电效率随着工作温度、电流密度的增大而提升. 电解液浓度对电池的放电效率影响较大,当浓度为3.0 mol/L时电池的工作效率接近78%,当浓度为1.0和6.0 mol/L时工作效率低于60%,浓度过高和过低都会影响电池的放电效率.

关键词: 铝-空气燃料电池产热行为放电效率    
Abstract:

An in-situ thermal characterization theoretical model and method specifically designed for this battery type was proposed aiming at the characterization of heat-generating behaviors in aluminum-air fuel cells for automotive power applications. The influence mechanisms of operating temperature, electrolyte concentration, and current density on the battery's temperature rise during discharge, heat loss, heat generation rate, and discharge efficiency were analyzed. Results show that the aluminum-air battery's temperature-rise amplitude, heat loss, and heat generation rate increase with decreasing operating temperature and increasing electrolyte concentration. The battery’s heat generation rate gradually decreases over the discharge duration, while the discharge efficiency improves with increasing operating temperature and current density. Electrolyte concentration significantly impacts the battery’s discharge efficiency. The operational efficiency approaches 78% at a concentration of 3.0 mol/L. Efficiencies fall below 60% at concentrations of both 1.0 mol/L and 6.0 mol/L, indicating that excessively high or low concentrations detrimentally affect discharge efficiency.

Key words: aluminum-air fuel battery    heat-generating behavior    discharge efficiency
收稿日期: 2025-02-27 出版日期: 2025-10-30
:  TK124  
基金资助: 国家自然科学基金资助项目(52472381);国家自然科学青年基金资助项目(52206276).
通讯作者: 盛雷     E-mail: 2326147108@qq.com;shenglei369@163.com
作者简介: 唐晓丹(1966—),男,副教授,从事新能源汽车结构及检测、电池热管理、汽车热管理的研究. orcid.org/0009-0006-9255-2989.E-mail:2326147108@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
唐晓丹
盛雷
张振东

引用本文:

唐晓丹,盛雷,张振东. 车用动力铝-空气燃料电池的产热行为实验[J]. 浙江大学学报(工学版), 2025, 59(11): 2293-2299.

Xiaodan TANG,Lei SHENG,Zhendong ZHANG. Experiment of heat generation behavior of automotive power aluminum-air fuel battery. Journal of ZheJiang University (Engineering Science), 2025, 59(11): 2293-2299.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.11.008        https://www.zjujournals.com/eng/CN/Y2025/V59/I11/2293

图 1  铝-空气燃料电池的工作原理及产热分析
图 2  铝-空气电池实验系统
图 3  不同环境温度下铝-空气电池的温度变化和表面热流密度
图 4  不同电解液浓度下铝-空气电池的温度变化和表面热流密度
图 5  不同电流密度下铝-空气电池的温度变化和表面热流密度
图 6  铝-空气电池的产热率
图 7  铝-空气电池的工作电压
图 8  铝-空气电池的放电效率
1 SHENG L, FU L, ZHANG Z, et al Method to characterize thermal performances of an aluminum-air battery[J]. Energy, 2024, 301: 131757
doi: 10.1016/j.energy.2024.131757
2 朱奎, 韩基泰, 李昊 铝空气电池固态和准固态电解质研究进展[J]. 电池, 2023, 53 (5): 568- 571
ZHU Kui, HAN Jitai, LI Hao Research progress on solid and quasi solid electrolytes for aluminum-air battery[J]. Battery, 2023, 53 (5): 568- 571
3 沈虹宁, 方奕栋, 胡天恩, 等 低温下电解液浓度对铝-空气电池的影响[J]. 电池, 2019, 49 (6): 470- 473
SHEN Hongning, FANG Yidong, HU Tian’en, et al Influence of electrolyte concentration on aluminum-air battery under lower temperatures[J]. Battery, 2019, 49 (6): 470- 473
4 HU T, LI K, FANG Y, et al Experimental research on temperature rise and electric characteristics of aluminum air battery under open-circuit condition for new energy vehicle[J]. International Journal of Energy Research, 2019, 43: 1099- 1110
doi: 10.1002/er.4329
5 WEN H, LIU Z, QIAO J, et al Ultrahigh voltage and energy density aluminum-air battery based on aqueous alkaline-acid hybrid electrolyte[J]. International Journal of Energy Research, 2020, 44 (13): 1- 10
6 吴佳佳, 吴广泽, 李萱苡, 等 铝空气电池的热特性及其研究方法[J]. 中国金属通报, 2021, 1 (6): 114- 115
WU Jiajia, WU Guangze, LI Xuanyi, et al Thermal characteristics and research methods of aluminum air batteries[J]. China Metal Bulletin, 2021, 1 (6): 114- 115
doi: 10.3969/j.issn.1672-1667.2021.06.056
7 刘春梅, 顾家明, 赖高强 棉布基铝空气电池性能研究[J]. 河南科技大学学报: 自然科学版, 2024, 45 (5): 32- 40
LIU Chunmei, GU Jiaming, LAI Gaoqiang Study on the performance of cotton based aluminum air battery[J]. Journal of Henan University of Science and Technology: Natural Science Edition, 2024, 45 (5): 32- 40
8 CHEN B, LENG D, XUAN J, et al A high specific capacity membraneless aluminum-air cell operated with an inorganic/organic hybrid electrolyte[J]. Journal of Power Sources, 2016, 336 (1): 19- 26
9 张清扬. 铝空气电池电解液循环及热管理系统研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.
ZHANG Qingyang. Research on electrolyte circulation and thermal management system of aluminum air battery [D]. Harbin: Harbin Institute of Technology, 2020.
10 REVEL R, AUDICHON T, GONZALEZ S Non-aqueous aluminum–air battery based on ionic liquid electrolyte[J]. Journal of Power Sources, 2014, 272 (1): 415- 421
11 DOCHE M, NOVEL-CATTIN F, DURAND R, et al Characterization of different grades of aluminum anodes for aluminum/air batteries[J]. Journal of Power Sources, 1997, 65 (1/2): 197- 205
12 陈云超, 齐敏杰, 李焙, 等. 一种铝空气电池散热结构: CN202211386507.6 [P]. 2023-02-28.
13 张昭. 全固态聚合物铝空气电池研究 [D]. 长春: 吉林大学, 2014.
ZHANG Zhao. Research on all solid-state polymer aluminum air battery [D]. Changchun: Jilin University, 2014.
14 RANI B, KUMAR J, SAINI P, et al Aluminum-air batteries: current advances and promises with future directions[J]. RSC Advances, 2024, 17 (25): 17628- 17663
15 LIU Y, SUN Q, LI W, et al A comprehensive review on recent progress in aluminum-air batteries[J]. Green Energy and Environment, 2017, 2 (3): 246- 277
doi: 10.1016/j.gee.2017.06.006
[1] 许丹丹,蒋恩柯,诸骏,郭宇. 柔性生物质颗粒运动混合的实验研究[J]. 浙江大学学报(工学版), 2025, 59(11): 2285-2292.
[2] 牟林巍, 张宇鸿, 李佳琦, 张嘉懿, 蒋平, 范利武. 表面芯吸性对淬火过程中沸腾传热特性的影响[J]. 浙江大学学报(工学版), 2018, 52(5): 960-965.
[3] 杨继虎, 孙志坚, 袁瑞峰, 黄浩, 陈天宇, 胡亚才. 电厂氟塑钢空预器的传热与积灰性能研究[J]. 浙江大学学报(工学版), 2018, 52(3): 577-583.
[4] 代超, 纪献兵, 周冬冬, 王野, 徐进良. 液滴碰撞不同湿润性表面的行为特征[J]. 浙江大学学报(工学版), 2018, 52(1): 36-42.
[5] 钟勋, 俞小莉, 吴俊, 蒋平灶. 氧化铝纳米流体在车用热交换器中的试验研究[J]. J4, 2010, 44(4): 761-764.
[6] 李冠球, 李蔚, 张政江, 张巍, 徐志明. 基于冯-卡门类比建立螺纹管内颗粒污垢模型[J]. J4, 2010, 44(3): 494-498.