Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (11): 2285-2292    DOI: 10.3785/j.issn.1008-973X.2025.11.007
机械工程、能源工程     
柔性生物质颗粒运动混合的实验研究
许丹丹1(),蒋恩柯1,诸骏1,郭宇2
1. 浙江工业大学 机械工程学院,浙江 杭州 310023
2. 浙江大学 航空航天学院,浙江 杭州 310027
Experimental investigation on dynamics and mixing of flexible biomass particles
Dandan XU1(),Enke JIANG1,Jun ZHU1,Yu GUO2
1. College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China
2. School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1552 KB)   HTML
摘要:

为了深入理解柔性生物质颗粒的运动混合行为,选取纤维状烟丝颗粒为代表,开展旋转滚筒内烟丝颗粒的运动混合的实验研究. 采用图像处理的方法,确定动态休止角(AOR)和莱西混合指数,分别量化标定颗粒运动形态和混合程度. 开展关键参数的分析,发现颗粒填充度的增加会引起动态休止角和混合速率降低. 在当前考察的参数值范围内,滚筒内壁摩擦系数和滚筒转速的增加虽然对动态休止角的影响不大,但是会引起颗粒混合速率的显著增加. 在滚筒内壁安装耙钉,会显著增大动态休止角;采用适当的耙钉数量和长度,可以实现较大的颗粒混合速率.

关键词: 生物质颗粒柔性纤维颗粒混合颗粒流旋转滚筒图像处理    
Abstract:

Experimental studies were conducted to analyze dynamics and mixing behavior of the tobacco particles in a rotating drum by using fibrous tobacco particles as representatives of the biomass particles in order to understand dynamic and mixing behaviors of flexible biomass particles. Dynamic angle of repose (AoR) and Lacey index were determined by using image process method in order to respectively quantify flowability and extent of mixing. Effects of some critical parameters were analyzed. Results showed that an increase in the material fill ratio led to a reduction in both AoR and mixing rate. Augments in the particle-wall friction coefficient and rotational velocity in the considered ranges showed slight impacts on AoR, while they remarkably enhanced the mixing rate. Installation of rods on the internal surface of the drum increased AoR, and the mixing rate was maximized by installing the rods with optimal number and length.

Key words: biomass particle    flexible fiber    granular mixing    granular flow    rotating drum    image process
收稿日期: 2024-10-01 出版日期: 2025-10-30
:  TK124  
基金资助: 国家自然科学基金资助项目(12372250).
作者简介: 许丹丹(1987—),女,讲师,博士,从事力学、颗粒技术、能源和化工领域的交叉研究. orcid.org/0009-0002-1907-2840. E-mail:xudandan@zjut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
许丹丹
蒋恩柯
诸骏
郭宇

引用本文:

许丹丹,蒋恩柯,诸骏,郭宇. 柔性生物质颗粒运动混合的实验研究[J]. 浙江大学学报(工学版), 2025, 59(11): 2285-2292.

Dandan XU,Enke JIANG,Jun ZHU,Yu GUO. Experimental investigation on dynamics and mixing of flexible biomass particles. Journal of ZheJiang University (Engineering Science), 2025, 59(11): 2285-2292.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.11.007        https://www.zjujournals.com/eng/CN/Y2025/V59/I11/2285

图 1  烟丝颗粒的粒度、粒形表征
图 2  旋转滚筒实验装置的示意图
图 3  采用图像处理方法确定运动颗粒床动态休止角的流程
图 4  采用图像处理方法确定莱西混合指数的流程
图 5  小滚筒(R = 92 mm)内不同填充度下动态休止角随时间的变化
图 6  不同尺寸滚筒内平均动态休止角随颗粒填充度的变化
图 7  小滚筒内不同填充度的混合过程(R = 92 mm, ω = 9 r/min, μ = 1.0)
图 8  滚筒尺寸与填充度对颗粒混合的影响
图 9  不同尺寸滚筒内的平均动态休止角随颗粒-壁面摩擦系数的变化
图 10  颗粒-壁面摩擦系数对颗粒混合的影响
图 11  不同尺寸滚筒的平均动态休止角随滚筒转速的变化
图 12  滚筒转速和尺寸对颗粒混合速率的耦合影响
图 13  带3个耙钉的滚筒内烟丝颗粒混合实验
图 14  耙钉数对颗粒运动和混合的影响
图 15  耙钉长度对颗粒运动和混合的影响
1 ZHANG J J, QU Z G, ZHANG J F, et al A three-dimensional numerical study of coupled photothermal and photoelectrical processes for plasmonic solar cells with nanoparticles[J]. Renewable Energy, 2021, 165 (1): 278- 287
2 ABEDINI A, BUTCHER C, CHEN Z T Numerical simulation of the influence of particle clustering on tensile behavior of particle-reinforced composites[J]. Computational Materials Science, 2013, 73: 15- 23
doi: 10.1016/j.commatsci.2013.02.021
3 LARIMI M M, RAMIAR A, RANJBAR A A Numerical simulation of magnetic nanoparticles targeting in a bifurcation vessel[J]. Journal of Magnetism and Magnetic Materials, 2014, 362: 58- 71
doi: 10.1016/j.jmmm.2014.03.002
4 van SLEEUWEN R, PANTALEEV S, EBRAHIMI M Efficient DEM modeling of solid flavor particle mixing in a rotary drum[J]. Powder Technology, 2024, 437: 119559
doi: 10.1016/j.powtec.2024.119559
5 SANTOS D A, DUARTE C R, BARROZO M A S Segregation phenomenon in a rotary drum: experimental study and CFD simulation[J]. Powder Technology, 2016, 294: 1- 10
doi: 10.1016/j.powtec.2016.02.015
6 KUMAR S, KHATOON S, YOGI J, et al Experimental investigation of segregation in a rotating drum with non-spherical particles[J]. Powder Technology, 2022, 411: 117918
doi: 10.1016/j.powtec.2022.117918
7 HEILBUTH R R, SOUZA G M, SANTOS D A, et al Numerical evaluation of the granular mixing behavior in a flighted rotary drum through the discrete element method[J]. Powder Technology, 2022, 400: 117251
doi: 10.1016/j.powtec.2022.117251
8 孙撼林, 方海峰, 刘锐, 等 工装篮烘干筒内硅料颗粒混合过程的数值模拟[J]. 中国粉体技术, 2023, 29 (4): 22- 35
SUN Hanlin, FANG Haifeng, LIU Rui, et al Numerical simulation of mixing process of silicon particles in drying cylinder of tooling basket[J]. China Powder Science and Technology, 2023, 29 (4): 22- 35
9 CHOU S H, LIAO C C, HSIAU S S An experimental study on the effect of liquid content and viscosity on particle segregation in a rotating drum[J]. Powder Technology, 2010, 201 (3): 266- 272
doi: 10.1016/j.powtec.2010.04.009
10 PORTEIRO J, COLLAZO J, PATINO D, et al Numerical modeling of a biomass pellet domestic boiler[J]. Energy and Fuels, 2009, 23 (2): 1067- 1075
doi: 10.1021/ef8008458
11 GU C, YUAN Z, SUM S, et al Simulation investigation of drying characteristics of wet filamentous biomass particles in a rotary kiln[J]. Fuel Processing Technology, 2018, 178: 344- 352
doi: 10.1016/j.fuproc.2018.07.001
12 GU C, YAO S, PAN D, et al Experimental research on the drying characteristics of flexible fibrous biomass fuels in the baffled-rotary cylinder[J]. Energy and Fuels, 2019, 33 (3): 2285- 2292
doi: 10.1021/acs.energyfuels.8b04241
13 YANG Q, CHEN J, ZHOU X, et al Modeling of inter-tablet coating uniformity of electrostatic dry powder coating by discrete element method[J]. Powder Technology, 2022, 411: 117929
doi: 10.1016/j.powtec.2022.117929
14 XIE C, YOU Y, MA H, et al Mechanism of inter-tablet coating variability: investigation about the motion behavior of ellipsoidal tablets in a pan coater[J]. Powder Technology, 2021, 379: 345- 361
doi: 10.1016/j.powtec.2020.10.088
15 HAN Jiawei, SHEN Kai, GUO Yu, et al Discrete element simulations of flexible ribbon-like particles[J]. Powder Technology, 2023, 429: 118950
doi: 10.1016/j.powtec.2023.118950
16 沈凯, 樊虎, 韩乐园, 等 基于图像识别的叶丝形态表征及其数值模拟[J]. 中国烟草学报, 2024, 30 (4): 55- 66
SHEN Kai, FAN Hu, HAN Leyuan, et al Characterization of cut tobacco morphology based on image recognition and its application in numerical simulations[J]. Acta Tabacaria Sinica, 2024, 30 (4): 55- 66
17 LIU Peiyuan, YANG Runyu, YU Aibing DEM study of the transverse mixing of wet particles in rotating drums[J]. Chemical Engineering Science, 2013, 86: 99- 107
doi: 10.1016/j.ces.2012.06.015
18 BARROZOL M A, SANORI D J, FREIRE J T, et al Discrimination of equilibrium moisture equations for soybean using nonlinearity measures[J]. Drying Technology, 1996, 14 (7/8): 1779- 1794
[1] 刘子豪,张佳欣,薛峰,张俊,陈伟杰,鹿业波. 基于改进YOLO-v8的精密管件表面缺陷检测方法[J]. 浙江大学学报(工学版), 2025, 59(7): 1514-1522.
[2] 杨敏航,徐海松,黄益铭,叶正男,张云涛,胡兵. 基于光源感知的跨相机颜色一致性算法[J]. 浙江大学学报(工学版), 2025, 59(3): 557-565.
[3] 陈智超,杨杰,李凡,冯志成. 基于深度学习的列车运行环境感知关键算法研究综述[J]. 浙江大学学报(工学版), 2025, 59(1): 1-17.
[4] 赵小强,王泽,宋昭漾,蒋红梅. 基于动态注意力网络的图像超分辨率重建[J]. 浙江大学学报(工学版), 2023, 57(8): 1487-1494.
[5] 郭浩然,郭继昌,汪昱东. 面向水下场景的轻量级图像语义分割网络[J]. 浙江大学学报(工学版), 2023, 57(7): 1278-1286.
[6] 熊帆,陈田,卞佰成,刘军. 基于卷积循环神经网络的芯片表面字符识别[J]. 浙江大学学报(工学版), 2023, 57(5): 948-956.
[7] 詹正书,赵宇,梁腾,刘准,王玮. 离散元模拟离心超重力场下的斜槽颗粒流[J]. 浙江大学学报(工学版), 2022, 56(6): 1232-1240.
[8] 温佩芝,陈君谋,肖雁南,温雅媛,黄文明. 基于生成式对抗网络和多级小波包卷积网络的水下图像增强算法[J]. 浙江大学学报(工学版), 2022, 56(2): 213-224.
[9] 蒋昊,徐海松. 基于直方图与图像分块融合的阶调映射算法[J]. 浙江大学学报(工学版), 2022, 56(11): 2224-2231.
[10] 陈彤,郭剑锋,韩心中,谢学立,席建祥. 基于生成对抗模型的可见光-红外图像匹配方法[J]. 浙江大学学报(工学版), 2022, 56(1): 63-74.
[11] 徐铸业,赵小强,蒋红梅. 基于点分布模型的3D模型拟合方法[J]. 浙江大学学报(工学版), 2021, 55(12): 2373-2381.
[12] 蔡瑞环,赵永志. 双螺旋锥形混合器叶片结构对颗粒混合的影响[J]. 浙江大学学报(工学版), 2021, 55(11): 2067-2075.
[13] 马华庆,赵永志. 喷动流化床中杆状颗粒混合特性的CFD-DEM模拟[J]. 浙江大学学报(工学版), 2020, 54(7): 1347-1354.
[14] 李瑛,成芳,赵志林. 采用结构光的大跨度销孔加工精度在线测量[J]. 浙江大学学报(工学版), 2020, 54(3): 557-565.
[15] 王万良,杨小涵,赵燕伟,高楠,吕闯,张兆娟. 采用卷积自编码器网络的图像增强算法[J]. 浙江大学学报(工学版), 2019, 53(9): 1728-1740.