| 机械工程、能源工程 |
|
|
|
|
| 基于3D关键点的双目视觉物体6D位姿估计 |
宁锴旭( ),陆晴,杨恒*( ),王韶涵 |
| 太原科技大学 机械工程学院,山西 太原 030024 |
|
| 6D pose estimation of binocular vision object based on 3D key point |
Kaixu NING( ),Qing LU,Heng YANG*( ),Shaohan WANG |
| School of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China |
引用本文:
宁锴旭,陆晴,杨恒,王韶涵. 基于3D关键点的双目视觉物体6D位姿估计[J]. 浙江大学学报(工学版), 2025, 59(11): 2277-2284.
Kaixu NING,Qing LU,Heng YANG,Shaohan WANG. 6D pose estimation of binocular vision object based on 3D key point. Journal of ZheJiang University (Engineering Science), 2025, 59(11): 2277-2284.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.11.006
或
https://www.zjujournals.com/eng/CN/Y2025/V59/I11/2277
|
| 1 |
YANN L, JUSTIN C, MATHIEU A, et al. Cosypose: consistent multi-view multi-object 6D pose estimation [C]// European Conference on Computer Vision. Glasgow: [s. n. ], 2020: 574–591.
|
| 2 |
PENG S D, LIU Y, HUANG Q X, et al. Pvnet: pixel-wise voting network for 6dof pose estimation [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 4561-4570.
|
| 3 |
HE Y S, SUN W, HUANG H B, et al. Pvn3d: a deep point-wise 3d keypoints voting network for 6dof pose estimation [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 11632-11641.
|
| 4 |
HE Y S, HUANG H B, FAN H Q, et al. Ffb6d: a full flow bidirectional fusion network for 6d pose estimation [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 3003-3013.
|
| 5 |
LI Z G, WANG G, JI X Y. CDPN: coordinates-based disentangled pose network for real time rgb-based 6-DoF object pose estimation [C]// IEEE International Conference on Computer Vision. Seoul: IEEE, 2019: 7678-7687.
|
| 6 |
TREMBLAY J, TO T, SUNDARALINGAM B, et al. Deep object pose estimation for semantic robotic grasping of household objects [C]//2nd Conference on Robot Learning. Zurich: PMLR, 2018: 306-316.
|
| 7 |
GAO G, LAURI M, WANG Y L, et al. 6d object pose regression via supervised learning on point clouds [C]//IEEE International Conference on Robotics and Automation. Paris: IEEE, 2020: 3643-3649.
|
| 8 |
CHEN W, JIA X, CHANG H J, et al. g2l-net: global to local network for real-time 6d pose estimation with embedding vector features [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 4233-4242.
|
| 9 |
AHMADYAN A, ZHANG L K, ABLAVATSKI A, et al. Objectron: a large scale dataset of object-centric videos in the wild with pose annotations [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 7822-7831.
|
| 10 |
WANG H, SRIDHAR S, HUANG J W, et al. Normalized object coordinate space for category-level 6d object pose and size estimation [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 2642-2651.
|
| 11 |
ZHANG R D, DI Y, MANHARDT F, et al. SSP-pose: symmetry-aware shape prior deformation for direct category-level object pose estimation [C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Kyoto: IEEE, 2022: 7452-7459.
|
| 12 |
HE Y S, WANG Y, FAN H Q, et al. Fs6d: few-shot 6d pose estimation of novel objects [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 6814-6824.
|
| 13 |
WU J, WANG Y, XIONG R. Unseen object pose estimation via registration [C]// IEEE International Conference on Real-time Computing and Robotics. Guangzhou: IEEE, 2021: 974-979.
|
| 14 |
SUN J M, WANG Z H, ZHANG S Y, et al. Onepose: one-shot object pose estimation without cad models [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 6825-6834.
|
| 15 |
CHEN K, JAMES S, SUI C Y, et al. Stereopose: category-level 6d transparent object pose estimation from stereo images via back-view nocs [C]//IEEE International Conference on Robotics and Automation. London: IEEE, 2023: 2855-2861.
|
| 16 |
YIN M H, YAO Z L, CAO Y, et al. Disentangled non-local neural networks [C]// European Conference on Computer Vision. Glasgow: Springer, 2020: 191-207.
|
| 17 |
WANG Y Q, YING X Y, WANG L G, et al. Symmetric parallax attention for stereo image super-resolution [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 766-775.
|
| 18 |
VELIčKOVIć P, CUCURULL G, CASANOVA A, et al. Graph attention networks [C]//Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics. Stroudsburg: ACL, 2021: 850-862.
|
| 19 |
SUWAJANAKORN S, SNAVELY N, TOMPSON J J, et al. Discovery of latent 3d keypoints via end-to-end geometric reasoning [C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc, 2018: 2067-2074.
|
| 20 |
LIU X Y, JONSCHKOWSKI R, ANGELOVA A, et al. Keypose: multi-view 3d labeling and keypoint estimation for transparent objects [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 11602-11610.
|
| 21 |
SARLIN P E, CADENA C, SIEGWART R, et al. From coarse to fine: robust hierarchical localization at large scale [C] //Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 12716-12725.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|