Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (5): 991-998    DOI: 10.3785/j.issn.1008-973X.2021.05.020
材料与化学工程     
Al2O3纳米流体液滴撞击壁面的动力学行为数值研究
胡定华(),刘诗雨
南京理工大学 能源与动力工程学院,江苏 南京 210094
Numerical study on dynamic behaviors of Al2O3 nanofluid droplet impacting on solid wall
Ding-hua HU(),Shi-yu LIU
School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
 全文: PDF(1277 KB)   HTML
摘要:

针对纳米流体液滴撞击固体壁面的动力学行为,建立基于相场方法描述液滴动态过程的二维数值模型,引入Kistler动态接触角模型以模拟铺展过程中液滴动态接触角变化以及三相接触线的迁移. 通过模拟分析液滴铺展因子、无量纲高度的变化研究不同纳米颗粒体积分数、惯性力和液滴直径等因素对水基Al2O3纳米流体液滴撞击壁面的铺展回缩过程的影响机制. 结果表明:超过一定体积分数的纳米颗粒使流体表现出明显的剪切稀化特性,增加液滴的黏性耗散,抑制液滴的铺展回缩过程;液滴撞击速度的增加会增大其撞击壁面时最大铺展直径和达到稳定状态的耗时,直径的增加使液滴振荡周期加长;体积分数为4%的纳米颗粒可以抑制上述两者带来的影响,使液滴更快到达稳定状态.

关键词: 纳米流体液滴撞击壁面体积分数相场方法    
Abstract:

The dynamical behavior of nanofluid droplet impacting on the solid wall was numerically studied. A two-dimensional numerical model based on the phase-field method was established, and the Kistler dynamic contact angle model was introduced to describe the evolution of droplet contact angle and three-phase contact line during spreading. The influences of nanoparticle volume fraction, inertia force and droplet diameter on the spreading and retraction behaviors of water-based Al2O3 nanofluid droplets were studied in terms of spreading factor and dimensionless height. Results indicated that the nanoparticles with volume fraction over a certain value made the fluid exhibit obvious shear-thinning characteristics, which can increase the viscous dissipation of droplets and suppress the spreading and retraction process of droplets. The increase of droplet initial velocity would increase the maximum spreading diameter and the time to reach the stable state when it impacts on the solid surface, while the increase of droplet diameter would lengthen the oscillation period of the droplet. It is also found that the nanoparticles of 4% volume fraction can suppress the influence of increase of droplet initial velocity and diameter, and help the droplet faster to reach stable state.

Key words: nanofluid    droplet    surface impingement    volume fraction    phase-field method
收稿日期: 2020-05-12 出版日期: 2021-06-10
CLC:  TQ 21.1  
基金资助: 国家自然科学基金青年基金资助项目(51706102);中央高校基本科研业务费专项资金资助项目(30917011325)
作者简介: 胡定华(1986—),男,讲师,博士,从事微尺度相变散热研究. orcid.org/0000-0002-2725-7389. E-mail: dhhu@njust.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
胡定华
刘诗雨

引用本文:

胡定华,刘诗雨. Al2O3纳米流体液滴撞击壁面的动力学行为数值研究[J]. 浙江大学学报(工学版), 2021, 55(5): 991-998.

Ding-hua HU,Shi-yu LIU. Numerical study on dynamic behaviors of Al2O3 nanofluid droplet impacting on solid wall. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 991-998.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.05.020        http://www.zjujournals.com/eng/CN/Y2021/V55/I5/991

图 1  液滴撞击固体表面物理模型
$\varphi _{\rm{p}} $/% m n
1 0.0060 0.599
2 0.0118 0.614
3 0.0458 0.641
4 0.2562 0.678
表 1  纳米流体液滴幂律参数
图 2  液滴网格细化
图 3  网格无关性验证
图 4  液滴撞击壁面实验结果[31-33]和本研究所建模型模拟结果的验证对比
图 5  纯水与不同颗粒体积分数的纳米流体液滴铺展因子变化曲线
图 6  纯水与不同颗粒体积分数的纳米流体液滴无量纲高度变化曲线
图 7  纯水与不同颗粒体积分数的纳米流体液滴在不同初速度下的铺展因子变化曲线
图 8  纯水液滴与4%体积分数的纳米流体液滴在相同时间的模拟结果对比
图 9  纯水与不同颗粒体积分数的纳米流体液滴在不同直径下的铺展因子变化曲线
图 10  纯水与不同颗粒体积分数的纳米流体液滴在不同直径下的最大铺展因子
1 WANG C H, TSAI H L, WU Y C, et al Investigation of molten metal droplet deposition and solidification for 3D printing techniques[J]. Journal of Micromechanics and Microengineering, 2016, 26 (9): 095012
doi: 10.1088/0960-1317/26/9/095012
2 PALM L, NILSSON J Impact on droplet placement on paper by the level of droplet flight stability in a continuous ink jet printer[J]. Journal of Imaging Science and Technology, 1998, 42 (6): 534- 540
3 DORR G J, WANG S, MAYO L C, et al Impaction of spray droplets on leaves: influence of formulation and leaf character on shatter, bounce and adhesion[J]. Experiments in Fluids, 2015, 56 (7): 143
doi: 10.1007/s00348-015-2012-9
4 ASAKAWA D, CHEN L C, HIRAOKA K The analysis of industrial synthetic polymers by electrospray droplet impact/secondary ion mass spectrometry[J]. Journal of Mass Spectrometry, 2009, 44 (6): 945- 951
doi: 10.1002/jms.1569
5 YARIN A L Drop impact dynamics: splashing, spreading, receding, ${\rm{bouncing}}\cdots $ [J]. Annu Rev Fluid Mech, 2006, 38: 159- 192
doi: 10.1146/annurev.fluid.38.050304.092144
6 RIOBOO R, TROPEA C, MARENGO M Outcomes from a drop impact on solid surfaces[J]. Atomization and sprays, 2001, 11 (2): 155- 165
7 杨宝海, 王宏, 朱恂, 等 速度对液滴撞击超疏水壁面行为特性的影响[J]. 化工学报, 2012, 63 (10): 3027- 3033
YANG Bao-hai, WANG Hong, ZHU Xun, et al Effect of velocity on the behavior of droplet impacting superhydrophobic wall[J]. CIESC Journal, 2012, 63 (10): 3027- 3033
doi: 10.3969/j.issn.0438-1157.2012.10.003
8 KANNANGARA D, SHEN W Roughness effects of cellulose and paper substrates on water drop impact and recoil[J]. Colloids Surfaces A: Physicochemical and Engineering Aspects, 2008, 330 (2/3): 151- 160
9 MAO T, KUHN D C, TRAN H Spread and rebound of liquid droplets upon impact on flat surfaces[J]. AIChE Journal, 1997, 43 (9): 2169- 2179
doi: 10.1002/aic.690430903
10 MARENGO M, ANTONINI C, ROISMAN I V, et al Drop collisions with simple and complex surfaces[J]. Current Opinion in Colloid and Interface Science, 2011, 16 (4): 292- 302
doi: 10.1016/j.cocis.2011.06.009
11 ?IKALO ?, GANI? E Phenomena of droplet: surface interactions[J]. Experimental Thermal and Fluid Science, 2006, 31 (2): 97- 110
doi: 10.1016/j.expthermflusci.2006.03.028
12 ?IKALO ?, MARENGO M, TROPEA C, et al Analysis of impact of droplets on horizontal surfaces[J]. Experimental Thermal and Fluid Science, 2002, 25 (7): 503- 510
doi: 10.1016/S0894-1777(01)00109-1
13 李维仲,?朱卫英,?权生林,?等 液滴撞击水平固体表面的可视化实验研究[J]. 热科学与技术, 2008, 7 (2): 155- 160
LI?Wei-zhong,?ZHU?Wei-ying,?QUAN Sheng-lin,?et?al Visual experimental study on droplet impacted onto horizontal solid surface[J]. Journal of Thermal Science and Technology, 2008, 7 (2): 155- 160
14 AN S M, LEE S Y Observation of the spreading and receding behavior of a shear-thinning liquid drop impacting on dry solid surfaces[J]. Experimental Thermal and Fluid Science, 2012, 37: 37- 45
doi: 10.1016/j.expthermflusci.2011.09.018
15 GUPTA A, KUMAR R Droplet impingement and breakup on a dry surface[J]. Computers and Fluids, 2010, 39 (9): 1696- 1703
doi: 10.1016/j.compfluid.2010.06.006
16 FUJIMOTO H, SHIOTANI Y, TONG A Y, et al Three-dimensional numerical analysis of the deformation behavior of droplets impinging onto a solid substrate[J]. International Journal of Multiphase Flow, 2007, 33 (3): 317- 332
doi: 10.1016/j.ijmultiphaseflow.2006.06.013
17 刘海龙, 沈学峰, 王睿, 等 纳米流体液滴撞击壁面铺展动力学特性研究[J]. 力学学报, 2018, 50 (5): 56- 63
LIU Hai-long, SHEN Xue-feng, WANG Rui, et al Research on spreading dynamics characteristics of nanofluid droplets impacting on wall[J]. Theoretical and Applied Mechanics, 2018, 50 (5): 56- 63
18 HAO C, ZHOU Y, ZHOU X, et al Dynamic control of droplet jumping by tailoring nanoparticle concentrations[J]. Applied Physics Letters, 2016, 109 (2): 021601
doi: 10.1063/1.4958691
19 SHEN X, LIU H, WANG R, et al. Numerical simulation of spreading characteristics for nanofluids droplet impinging on the solid surface [EB/OL]. [2020-05-01]. https://www.comsol.ch/paper/numerical-simulation-of-spreading-characteristics-for-nanofluids-droplet-impingi-53733.
20 RAVIKUMAR S V, HALDAR K, JHA J M, et al Heat transfer enhancement using air-atomized spray cooling with water–Al2O3 nanofluid [J]. International Journal of Thermal Sciences, 2015, 96: 85- 93
doi: 10.1016/j.ijthermalsci.2015.04.012
21 朱冬生, 孙纪远, 宋印玺, 等 喷雾冷却技术综述及纳米流体喷雾应用前景[J]. 化工进展, 2009, 28 (3): 368- 373
ZHU Dong-sheng, SUN Ji-yuan, SONG Yin-xi, et al Overview of spray cooling technology and application prospects of nanofluid spray[J]. Chemical Industry and Engineering Progress, 2009, 28 (3): 368- 373
doi: 10.3321/j.issn:1000-6613.2009.03.002
22 PAK B C, CHO Y I Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles[J]. Experimental Heat Transfer and International Journal, 1998, 11 (2): 151- 170
doi: 10.1080/08916159808946559
23 ADRIANA M A Electrical and rheological behavior of stabilized Al2O3 nanofluids [J]. Current Nanoscience, 2013, 9 (1): 81- 88
24 YANG L, DU K Investigations of surface tension of binary nanofluids[J]. Advanced Materials Research, 2011, 347?353: 786- 790
doi: 10.4028/www.scientific.net/AMR.347-353.786
25 CHINNAM J, DAS D K, VAJJHA R S, et al Measurements of the surface tension of nanofluids and development of a new correlation[J]. International Journal of Thermal Sciences, 2015, 98: 68- 80
doi: 10.1016/j.ijthermalsci.2015.07.008
26 YUE P, FENG J J, LIU C, et al A diffuse-interface method for simulating two-phase flows of complex fluids[J]. Journal of Fluid Mechanics, 2004, 515: 293- 317
doi: 10.1017/S0022112004000370
27 KISTLER S F Hydrodynamics of wetting[J]. Wettability, 1993, 6: 311- 430
28 CIE?LI?SKI J T, KRYGIER K A Sessile droplet contact angle of water-Al2O3, water-TiO2 and water-Cu nanofluids [J]. Experimental Thermal and Fluid Science, 2014, 59: 258- 263
doi: 10.1016/j.expthermflusci.2014.06.004
29 DAS P K, ISLAM N, ZAKARIA K, et al. Measurement of surface tension and contact angle of different nanofluids: an experimental study [C]// Proceedings of the Proceedings of the 24th National and 2nd International ISHMT-ASTFE Heat and Mass Transfer Conference. Kolkata: Begel House Inc, 2017: 2441-2448.
30 KIM S J, BANG I C, BUONGIORNO J, et al Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux[J]. International Journal of Heat and Mass Transfer, 2007, 50 (19/20): 4105- 4116
31 ZANG D, WANG X, GENG X, et al Impact dynamics of droplets with silica nanoparticles and polymer additives[J]. Soft Matter, 2012, 9 (2): 394- 400
32 GERMAN G, BERTOLA V Impact of shear-thinning and yield-stress drops on solid substrates[J]. Journal of Physics: Condensed Matter, 2009, 21 (37): 375111
doi: 10.1088/0953-8984/21/37/375111
33 杨舒生. 液滴撞击碳纳米管阵列表面动态特性的实验与数值模拟研究[D]. 镇江: 江苏大学, 2018.
YANG Shu-sheng. Experimental and numerical simulation research on the dynamic characteristics of droplets impacting the surface of carbon nanotube array [D]. Zhenjiang: Jiangsu University, 2018.
34 LI Y, WANG F, LIU H, et al Nanoparticle-tuned spreading behavior of nanofluid droplets on the solid substrate[J]. Microfluidics and Nanofluidics, 2015, 18 (1): 111- 120
doi: 10.1007/s10404-014-1422-y
35 BERGERON V, BONN D, MARTIN J Y, et al Controlling droplet deposition with polymer additives[J]. Nature, 2000, 405 (6788): 772- 775
doi: 10.1038/35015525
36 DUURSMA G, SEFIANE K, KENNEDY A Experimental studies of nanofluid droplets in spray cooling[J]. Heat Transfer Engineering, 2009, 30 (13): 1108- 1120
doi: 10.1080/01457630902922467
37 RIOBOO R, MARENGO M, TROPEA C Time evolution of liquid drop impact onto solid, dry surfaces[J]. Experiments in Fluids, 2002, 33 (1): 112- 124
doi: 10.1007/s00348-002-0431-x
38 SMITH M, BERTOLA V Effect of polymer additives on the wetting of impacting droplets[J]. Physical Review Letters, 2010, 104 (15): 154502
doi: 10.1103/PhysRevLett.104.154502
[1] 张井志,陈武铠,周乃香,雷丽,梁福顺. T型微通道内液滴形成过程及长度的实验研究[J]. 浙江大学学报(工学版), 2020, 54(5): 1007-1013.
[2] 刘舒昕,骆仲泱,鲁梦诗,赫明春,方梦祥,王浩霖. 荷电液滴联合声波捕集颗粒物的过程和特性[J]. 浙江大学学报(工学版), 2019, 53(7): 1282-1290.
[3] 高用祥,洪都,成有为,王丽军,李希. 连续三相喷射环流反应器的实验和数值模拟[J]. 浙江大学学报(工学版), 2019, 53(5): 997-1005.
[4] 孙潮,梅德清,徐行,李立昌,袁银男. 水平板上固着碳纳米管燃油液滴的蒸发特性[J]. 浙江大学学报(工学版), 2019, 53(2): 234-240.
[5] 谢晓强,杨建国,朱朝阳,刘川槐,赵虹,王智化. 碗式配风对燃烧效率与NOx质量浓度的影响[J]. 浙江大学学报(工学版), 2019, 53(2): 220-227.
[6] 代超, 纪献兵, 周冬冬, 王野, 徐进良. 液滴碰撞不同湿润性表面的行为特征[J]. 浙江大学学报(工学版), 2018, 52(1): 36-42.
[7] 王涛, 王亮, 林贵平, 柏立战, 刘向阳, 卜雪琴, 谢广辉. TiO2纳米流体在液冷服上的应用实验研究[J]. 浙江大学学报(工学版), 2016, 50(4): 681-690.
[8] 陈玲红,颜明明,吴建,吴学成,董翠维,岑可法. 基于数码相机的部分预混火焰碳烟体积分数场测量[J]. 浙江大学学报(工学版), 2016, 50(11): 2069-2076.
[9] 楼彬, 徐旭, 王文龙, 王宇飞, 范利武, 俞自涛2. 水基碳纳米管纳米流体在矩形腔内的自然对流传热[J]. 浙江大学学报(工学版), 2014, 48(12): 2196-2201.
[10] 梁军辉, 黄群星, 冯玉霄, 池涌, 严建华. 氧体积分数对乙烯扩散火焰中烟黑生成影响的实验[J]. J4, 2012, 46(8): 1465-1471.
[11] 田晨, 王勤辉, 程乐鸣, 骆仲泱, 倪明江. 偏置出口循环流化床内颗粒体积分数分布的测试[J]. J4, 2012, 46(4): 577-583.
[12] 黄芳,俞自涛,帅鸥,胡亚才,谢宁. 基于均匀设计法的碳纳米管纳米流体稳定性[J]. J4, 2011, 45(7): 1254-1258.
[13] 罗坤, 金台, 樊建人, 岑可法. 网格尺寸对液滴蒸发的影响[J]. J4, 2011, 45(12): 2176-2180.
[14] 王辉, 骆仲泱, 蔡洁聪, 王涛, 赵佳飞, 倪明江. SiO2纳米流体透射率影响因素实验研究[J]. J4, 2010, 44(6): 1143-1148.
[15] 肖宝兰, 俞小莉, 钟勋, 韩松, 夏立峰. 纳米流体流动传热性能的实验与模拟研究[J]. J4, 2010, 44(6): 1149-1154.