Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (4): 733-741    DOI: 10.3785/j.issn.1008-973X.2021.04.016
土木工程     
基于水沙床耦合的滩槽冲淤模拟与疏浚量计算
胡鹏1(),邓芍怡1,赵自雄1,曹志先2,刘怀汉3,贺治国1
1. 浙江大学 海洋学院,浙江 舟山 316021
2. 武汉大学 水资源与水电工程科学国家重点实验室,湖北 武汉 430072
3. 长江航道局 技术服务处,湖北 武汉 430010
Hydro-sediment-morphodynamic modeling of riverbed evolution and calculation of dredging volume
Peng HU1(),Shao-yi DENG1,Zi-xiong ZHAO1,Zhi-xian CAO2,Huai-han LIU3,Zhi-guo HE1
1. Ocean College, Zhejiang University, Zhoushan 316021, China
2. State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China
3. Technology Department, Changjiang Waterway Bureau, Wuhan 430010, China
 全文: PDF(5944 KB)   HTML
摘要:

为了提高疏浚量的预报准确度,将平面二维水沙床耦合数值模型应用于长江下游东流水道的滩槽演变和疏浚量计算,成功复演了2010年大水作用下主要的滩槽冲淤特征,西港航槽内计算疏浚量与实测疏浚施工方量的误差较小. 分析影响疏浚量计算不确定性的主要因素. 结果表明,计算网格尺寸对计算疏浚量有较大的影响,当网格尺度约等于或小于实测地形数据间隔时,计算疏浚量较一致,否则网格给疏浚量计算带来较大的不确定性;进口泥沙体积分数对计算疏浚量的影响较大.

关键词: 水沙床耦合模拟疏浚量长江航道河床演变    
Abstract:

A two-dimensional hydro-sediment-morphodynamic model was applied to simulate the evolution of bar and channel in the Dongliu waterway of lower Yangtze River and compute the dredging volume in order to improve the accuracy of dredging volume estimation. The main erosion/deposition characteristics of the Dongliu waterway in response to the 2010 flooding process were successfully reproduced. The error between the computed dredging volume and the actual data in Xigang channel is small. The main factors affecting the uncertainty of computed dredging volume were analyzed. Results show that the computational grid size greatly impacts on the computed dredging volume. When the grid size is approximately equal to or smaller than the measured topography data interval, the computed dredging volume is consistent, otherwise grid size brings great uncertainty to the computation of dredging volume. The volume fraction of inflow sediment greatly impacts on the computed dredging volume.

Key words: hydro-sediment-morphodynamic modelling    dredging volume    Yangtze waterway    riverbed evolution
收稿日期: 2020-10-31 出版日期: 2021-05-07
CLC:  TV 143  
基金资助: 长江航道局重点科研资助项目(K16-529112-016);国家自然科学基金资助项目(11772300);浙江省自然科学基金资助项目(LR19E090002)
作者简介: 胡鹏(1985—),男,教授,从事水沙动力学和泥沙运动的研究. orcid.org/0000-0001-9214-1318. E-mail: pengphu@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
胡鹏
邓芍怡
赵自雄
曹志先
刘怀汉
贺治国

引用本文:

胡鹏,邓芍怡,赵自雄,曹志先,刘怀汉,贺治国. 基于水沙床耦合的滩槽冲淤模拟与疏浚量计算[J]. 浙江大学学报(工学版), 2021, 55(4): 733-741.

Peng HU,Shao-yi DENG,Zi-xiong ZHAO,Zhi-xian CAO,Huai-han LIU,Zhi-guo HE. Hydro-sediment-morphodynamic modeling of riverbed evolution and calculation of dredging volume. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 733-741.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.04.016        http://www.zjujournals.com/eng/CN/Y2021/V55/I4/733

图 1  东流水道地理位置、初始地形、断面和床沙中值粒径分布示意图
图 2  东流水道进口和出口边界条件
图 3  2010年8月4日东流水道实测断面流速分布与计算流速分布
图 4  东流水道2010年4月—8月实测和计算冲淤分布
图 5  疏浚量的计算示意图
图 6  东流水道2010—2011年实测疏浚量和计算疏浚量对比
图 7  网格尺寸对西港航槽内初始地形的影响
图 8  网格尺寸对洪水过程后西港航槽冲淤的影响
图 9  网格尺寸对洪水过程后各断面地形的影响
图 10  网格尺寸对洪水过程后西港航槽疏浚量的影响
图 11  东流水道来沙量对西港航槽疏浚量的影响
1 李青云, 谭伦武, 张明进 长江下游东流水道航道整治经验总结[J]. 水道港口, 2007, 28 (3): 169- 172
LI Qing-yun, TAN Lun-wu, ZHANG Ming-jin Experience summary on channel regulation in Dongliu waterway on lower reach of the Yangtze River[J]. Journal of Waterway and Harbor, 2007, 28 (3): 169- 172
doi: 10.3969/j.issn.1005-8443.2007.03.004
2 李文全, 涂新民, 杨祖欣, 等 长江下游东流水道河床演变特征分析及航道整治[J]. 水运工程, 2011, 36 (10): 83- 88
LI Wen-quan, TU Xin-min, YANG Zu-xin, et al Analysis of river bed evolution and discussion on waterway regulation thought of Dongliu channel on the lower reach of the Yangtze River[J]. Port and Waterway Engineering, 2011, 36 (10): 83- 88
doi: 10.3969/j.issn.1002-4972.2011.10.020
3 刘洪春, 张伟, 李文全, 等 东流水道左岸边滩演变特征及其对航道条件影响分析[J]. 水运工程, 2013, 38 (8): 110- 114
LIU Hong-chun, ZHANG Wei, LI Wen-quan, et al Evolution characteristics of the left beach of Dongliu waterway and its effects on waterway condition[J]. Port and Waterway Engineering, 2013, 38 (8): 110- 114
doi: 10.3969/j.issn.1002-4972.2013.08.020
4 郑惊涛, 雷国平, 尹书冉, 等 东流水道航道整治二期工程整治思路及方案[J]. 水运工程, 2014, 39 (12): 96- 101
ZHENG Jing-tao, LEI Guo-ping, YIN Shu-ran, et al Regulation thought and scheme of Dongliu waterway phase Ⅱ project[J]. Port and Waterway Engineering, 2014, 39 (12): 96- 101
doi: 10.3969/j.issn.1002-4972.2014.12.019
5 张伟, 刘洪春, 李文全, 等 东流水道东港近期发展原因分析[J]. 水运工程, 2014, 39 (6): 102- 107
ZHANG Wei, LIU Hong-chun, LI Wen-quan, et al Analysis of reasons for recent development of Dongliu waterway’s Donggang channel[J]. Port and Waterway Engineering, 2014, 39 (6): 102- 107
doi: 10.3969/j.issn.1002-4972.2014.06.022
6 SHAERI S, STRAUSS D, ETEMAD-SHAHIDI A, et al Hydrosedimentological modelling of a small, trained tidal inlet system, Currumbin Creek, southeast Queensland, Australia[J]. Journal of Coastal Research, 2018, 34 (2): 341- 359
7 PAARLBERG A, GUERRERO M, HUTHOFF F, et al Optimizing dredge-and-dump activities for river navigability using a hydro-morphodynamic model[J]. Water, 2015, 7 (7): 3943- 3962
8 WITTING M, MEWIS P, ZANKE U. Modelling of sedimentation in dredged channels by currents and waves using wind statistics [C]// Proceeding of 4th International Conference on Hydroscience and Engineering. Seoul: [s. n.], 2000.
9 MEWIS P, ZANKE U. Morphodynamic-numerical modelling of the filling of mining pits [C]// Electronic Proceedings of International Conference on Hydroscience and Engineering. Philadelphia: [s. n.], 2006.
10 GUAN M, WRIGHT N, SLEIGH P, et al Physical complexity to model morphological changes at a natural channel bend[J]. Water Resources Research, 2016, 52 (8): 6348- 6364
doi: 10.1002/2015WR017917
11 胡鹏, 姬奥飞, 陶俊余 基于局部时间步长方法的潮流数值模型研究及应用[J]. 海洋工程, 2020, 38 (1): 111- 119
HU Peng, JI Ao-fei, TAO Jun-yu Numerical simulation of tidal flows based on the local-time step approach[J]. The Ocean Engineering, 2020, 38 (1): 111- 119
12 胡鹏, 韩健健, 雷云龙 基于局部分级时间步长方法的水沙耦合数学模拟[J]. 浙江大学学报: 工学版, 2019, 53 (4): 743- 752
HU Peng, HAN Jian-jian, LEI Yun-long Coupled modeling of sediment-laden flows based on local-time-step approach[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (4): 743- 752
13 HU P, LI Y Numerical modeling of the propagation and morphological changes of turbidity currents using a cost-saving strategy of solution updating[J]. International Journal of Sediment Research, 2020, 35 (6): 587- 599
doi: 10.1016/j.ijsrc.2020.05.003
14 CAO Z, PENDER G, WALLIS S, et al Computational dam-break hydraulics over erodible sediment bed[J]. Journal of Hydraulic Engineering, 2004, 130 (7): 689- 703
doi: 10.1061/(ASCE)0733-9429(2004)130:7(689)
15 LI W, DE VRIEND H J, WANG Z, et al Morphological modeling using a fully coupled, total variation diminishing upwind-biased centered scheme[J]. Water Resources Research, 2013, 49 (6): 3547- 3565
doi: 10.1002/wrcr.20138
16 CAO Z, YUE Z, PENDER G Landslide dam failure and flood hydraulics. Part II: coupled mathematical modelling[J]. Natural Hazards, 2011, 59 (2): 1003- 1019
doi: 10.1007/s11069-011-9814-8
17 CAO Z, YUE Z, PENDER G Landslide dam failure and flood hydraulics. Part I: experimental investigation[J]. Natural Hazards, 2011, 59 (2): 1021- 1045
doi: 10.1007/s11069-011-9815-7
18 HE Z, WU T, WENG H, et al Numerical simulation of dam-break flow and bed change considering the vegetation effects[J]. International Journal of Sediment Research, 2017, 32 (1): 105- 120
doi: 10.1016/j.ijsrc.2015.04.004
19 HU P, CAO Z, PENDER G, et al Numerical modelling of turbidity currents in the Xiaolangdi reservoir, Yellow River, China[J]. Journal of Hydrology, 2012, 464-465 (9): 41- 53
20 HU P, CAO Z Fully coupled mathematical modeling of turbidity currents over erodible bed[J]. Advances in Water Resources, 2008, 32 (1): 1- 15
21 HU P, HAN J, LI W, et al Numerical investigation of a sandbar formation and evolution in a tide-dominated estuary using a hydro-morphodynamic model[J]. Coastal Engineering Journal, 2018, 60 (4): 466- 483
doi: 10.1080/21664250.2018.1529263
22 HU P, LEI Y, HAN J, et al Improved local time step for 2D shallow-water modeling based on unstructured grids[J]. Journal of Hydraulic Engineering, 2019, 145 (12): 06019017
doi: 10.1061/(ASCE)HY.1943-7900.0001642
23 HU P, LEI Y, HAN J, et al Computationally efficient modeling of hydro-sediment-morphodynamic processes using a hybrid local time step/global maximum time step[J]. Advances in Water Resources, 2019, 127 (3): 26- 38
24 HU P, LEI Y, DENG S, et al Role of bar-channel interactions in a dominant branch shift: the Taipingkou waterway, Yangtze River, China[J]. River Research and Applications, 2020, 1- 15
25 张瑞瑾. 河流泥沙动力学 [M]. 北京: 水利电力出版社, 1989.
26 HOEY T, FERGUSON R Numerical simulation of downstream fining by selective transport in gravel bed rivers: model development and illustration[J]. Water Resources Research, 1994, 30 (7): 2251- 2260
doi: 10.1029/94WR00556
27 HU P, CAO Z, PENDER G, et al Numerical modelling of riverbed grain size stratigraphic evolution[J]. International Journal of Sediment Research, 2014, 29 (3): 329- 343
doi: 10.1016/S1001-6279(14)60048-2
28 WU W. Computational river dynamics [M]. London: Taylor and Francis Group, 2007.
29 BUSSING T, MURMAN E Finite-volume method for the calculation of compressible chemically reacting flows[J]. AIAA Journal, 1985, 26 (9): 1070- 1078
30 熊小元 长江中下游东流水道河床演变特性及趋势预测[J]. 水运工程, 2014, 39 (4): 125- 132
XIONG Xiao-yuan Evolution characteristics and trend prediction of Dongliu channel in middle and lower Yangtze River[J]. Port and Waterway Engineering, 2014, 39 (4): 125- 132
doi: 10.3969/j.issn.1002-4972.2014.04.026
31 陶桂兰, 姚祎雯, 吴腾, 等 东流水道维护疏浚方案分析[J]. 水道港口, 2015, 36 (4): 323- 328
TAO Gui-lan, YAO Yi-wen, WU Teng, et al Analysis of maintenance dredging scheme for Dongliu Waterway[J]. Journal of Waterway and Harbor, 2015, 36 (4): 323- 328
doi: 10.3969/j.issn.1005-8443.2015.04.009
32 雷国平 长江下游东流水道近期航道演变及维护对策[J]. 水运工程, 2016, 41 (11): 128- 133
LEI Guo-ping Recent evolution and countermeasures for Dongliu waterway in lower reach of the Yangtze River[J]. Port and Waterway Engineering, 2016, 41 (11): 128- 133
doi: 10.3969/j.issn.1002-4972.2016.11.023
33 钟德钰, 张红武, 王光谦 冲积河流混合活动层内床沙级配变化的动力学基本方程[J]. 水利学报, 2004, 49 (9): 24- 30
ZHONG De-yu, ZHANG Hong-wu, WANG Guang-qian Basic equation for variation of bed material composition in active layer of alluvial river[J]. Journal of Hydraulic Engineering, 2004, 49 (9): 24- 30
doi: 10.3321/j.issn:0559-9350.2004.09.004
34 陈钢. 近期长江下游河床阻力变化特征 [D]. 上海: 华东师范大学, 2018.
CHEN Gang. Recent change characteristics of river bed resistance in the lower reaches of the Yangtze River [D]. Shanghai: East China Normal University, 2018.
35 胡鹏. 冲积河流多重时间尺度理论与数学模拟研究 [D]. 武汉: 武汉大学, 2013.
HU Peng. Multiple time scales of fluvial processes and mathematical river modelling [D]. Wuhan: Wuhan University, 2013.
[1] 孙志林,郑佳芸,祝丽丽,种琳,刘俊,罗居元. 沉水植物对水流结构与泥沙淤积的影响[J]. 浙江大学学报(工学版), 2021, 55(1): 71-80.
[2] 张晓雷, 夏军强, 邓珊珊, 王增辉. 断面间距对黄河下游高含沙洪水模拟结果影响[J]. 浙江大学学报(工学版), 2016, 50(4): 735-743.
[3] 夏军强, 宗全利, 邓珊珊, 许全喜, 张翼. 三峡工程运用后荆江河段平滩河槽形态调整特点[J]. 浙江大学学报(工学版), 2015, 49(2): 238-245.
[4] 胡德超, 池龙哲, 杨琼, 王敏. 水库坝区冲刷漏斗的形成机理[J]. 浙江大学学报(工学版), 2015, 49(2): 257-264.
[5] 陈一帆, 程伟平, 蒋建群. 一种稳健的河流糙率反演方法[J]. J4, 2013, 47(8): 1361-1365.