Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (12): 2377-2385    DOI: 10.3785/j.issn.1008-973X.2020.12.012
土木与交通工程     
基于广义Clapeyron方程的含盐土冻结特征曲线模型
孟祥传1,2(),周家作2,*(),韦昌富1,2,陈盼2,张坤3,沈正艳4
1. 桂林理工大学 土木与建筑工程学院,广西 桂林 541004
2. 中国科学院武汉岩土力学研究所 岩土力学与工程国家重点实验室,湖北 武汉 430071
3. 甘肃省交通科学研究院有限公司 甘肃省桥梁隧道健康监测与安全评估技术重点实验室,甘肃 兰州 730030
4. 中国矿业大学 力学与建筑工程学院,北京 100083
Freezing characteristic curve model of saline soil based on generalized Clapeyron equation
Xiang-chuan MENG1,2(),Jia-zuo ZHOU2,*(),Chang-fu WEI1,2,Pan CHEN2,Kun ZHANG3,Zheng-yan SHEN4
1. College of Civil Engineering and Architecture, Guilin University of Technology, Guilin 541004, China
2. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
3. Key Laboratory of Bridge and Tunnel Health Monitoring and Safety Assessment Technology of Gansu Province, Gansu Provincial Transportation Research Institute Co. Ltd, Lanzhou 730030, China
4. School of Mechanics and Civil Engineering, China University of Mining and Technology, Beijing 100083, China
 全文: PDF(1599 KB)   HTML
摘要:

未冻水质量分数是评估盐渍土和滨海地区土体冻结过程地层稳定性的关键参数,其主要影响因素为温度和盐的质量分数. 基于考虑溶质效应的广义Clapeyron方程,通过无盐分土冻结特征曲线得到冻土吸力的微分形式,联合考虑残余水的质量分数的Books-Corey模型,推导出在任意盐的质量分数和温度条件下冻土中未冻水质量分数的理论模型. 开展冻结试验,利用核磁共振法获得不同水的质量分数、盐的质量分数下粉质黏土和粉土的冻结特征曲线. 试验结果表明:未冻水质量分数随温度降低呈指数函数递减,在同一温度下未冻水质量分数随着初始溶液浓度的增加近似呈线性增加,不同初始水的质量分数下的无盐土体冻结特征曲线具有一致性,粉土相对于粉质黏土更容易达到残余状态. 将理论模型与试验数据进行对比,验证了该模型能够较为合理地预测含盐土体的冻结特征曲线.

关键词: 未冻水质量分数化学势核磁共振残余水的质量分数Clapeyron方程    
Abstract:

The unfrozen water mass fraction is the key parameter to evaluate the stability of the soil during the freezing process of saline and coastal areas. The main influencing factors are temperature and salt mass fraction. The differential form of matric suction of frozen soil was obtained by the freezing characteristic curve of salt-free soil, based on the generalized Clapeyron equation considering solute effect, and the Books-Corey model with residual water mass fraction. A theoretical model of soil freezing characteristic curve were derived for frozen soil under arbitrary salt mass fraction and temperature conditions. The freezing test was carried out, and the freezing characteristic curves of silty clay and silt under different water mass fraction and salt mass fraction were obtained by nuclear magnetic resonance. The results show that the mass fraction of unfrozen water decreases exponentially with the reduction of temperature. The unfrozen water mass fraction increases linearly with the increasement of initial solution concentration at the same temperature. The freezing characteristic curves of salt-free soil with different initial water mass fraction are consistent. The silt reaches the residual state more easily than the silty clay. It is verified that the model can predict the freezing characteristic curve of saline soil reasonably by comparing the theoretical model with the test data.

Key words: unfrozen water mass fraction    chemical potential    nuclear magnetic resonance    residual water mass fraction    Clapeyron equation
收稿日期: 2019-10-14 出版日期: 2020-12-31
CLC:  TU 445  
基金资助: 国家自然科学基金资助项目(41572293,41602312)
通讯作者: 周家作     E-mail: xcmeng1994@163.com;jzzhou@whrsm.ac.cn
作者简介: 孟祥传(1994—),男,硕士生,从事冻土力学研究. orcid.org/0000-0001-9396-2695. E-mail: xcmeng1994@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
孟祥传
周家作
韦昌富
陈盼
张坤
沈正艳

引用本文:

孟祥传,周家作,韦昌富,陈盼,张坤,沈正艳. 基于广义Clapeyron方程的含盐土冻结特征曲线模型[J]. 浙江大学学报(工学版), 2020, 54(12): 2377-2385.

Xiang-chuan MENG,Jia-zuo ZHOU,Chang-fu WEI,Pan CHEN,Kun ZHANG,Zheng-yan SHEN. Freezing characteristic curve model of saline soil based on generalized Clapeyron equation. Journal of ZheJiang University (Engineering Science), 2020, 54(12): 2377-2385.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.12.012        http://www.zjujournals.com/eng/CN/Y2020/V54/I12/2377

土样 土粒相对密度 液限/% 塑限/% 塑性指数 pH 比表面积/(m2·g?1 w/% w/% w/%
粉土 2.73 27.3 15.6 11.7 7.60 16.6 14.6 72.9 12.5
粉质黏土 2.74 36.2 19.4 16.8 7.72 29.9 2.4 74.6 23.0
表 1  试验用土的物理参数
图 1  试验用土的孔径分布
图 2  试验仪器与试验过程
图 3  未冻水质量分数计算原理
图 4  不同盐的质量分数土中未冻水质量分数随温度变化曲线
图 5  有、无残余水的质量分数在模型中的对比
图 6  不同水的质量分数粉土未冻水质量分数随温度变化曲线
土样 w0 /% a N wr /% θs /°C
饱和粉土 26.0 0.016 1.1790 2.0 ?0.10
非饱和粉土 15.0 0.022 0.7011 1.9 ?0.08
非饱和粉质黏土 15.0 0.092 0.4000 1.0 ?0.35
表 2  土样拟合模型参数值
图 7  不同温度粉土未冻水质量分数随初始盐的质量分数变化曲线
图 8  不同温度粉土未冻水质量分数随盐的质量分数变化曲线
图 9  不同盐的质量分数莫玲黏土未冻水质量分数随温度变化曲线
图 10  无盐土体未冻水质量分数随温度变化曲线
1 马巍, 王大雁 中国冻土力学研究50 a回顾与展望[J]. 岩土工程学报, 2012, 34 (4): 625- 640
MA Wei, WANG Da-yan Studies on frozen soil mechanics in China in past 50 years and their prospect[J]. Chinese Journal of Geotechnical Engineering, 2012, 34 (4): 625- 640
2 DILLON H B, ANDERSLAND O B Predicting unfrozen water contents in frozen soils[J]. Canadian Geotechnical Journal, 1966, 3 (2): 53- 60
doi: 10.1139/t66-007
3 PATTERSON D E, SMITH M W The measurement of unfrozen water content by time domain reflectometry: results from laboratory tests[J]. Canadian Geotechnical Journal, 1981, 18 (1): 131- 144
doi: 10.1139/t81-012
4 TSYTOVICH N A. The mechanics of frozen ground [M]. New York: McGraw-Hill, 1975: 43-45.
5 徐敩祖, J L. 奥利奋特, A R. 泰斯 土水势、未冻水含量和温度[J]. 冰川冻土, 1985, 7 (1): 1- 11
XU Xiao-zu, OLIPHANT J L, TICE A R Soil-water potential and unfrozen water content and temperature[J]. Journal of Glaciology and Geocryology, 1985, 7 (1): 1- 11
6 MICHALOWSHI R L A constitutive model of saturated soils for frost heave simulations[J]. Cold Regions Science and Technology, 1993, 22 (1): 47- 63
doi: 10.1016/0165-232X(93)90045-A
7 KOZLOWSKI T A semi-empirical model for phase composition of water in clay-water systems[J]. Cold Regions Science and Technology, 2007, 49 (3): 226- 236
doi: 10.1016/j.coldregions.2007.03.013
8 BLACK P B, TICE A R Comparison of soil freezing curve and soil water curve data for Windsor sandy loam[J]. Water Resources Research, 1989, 25 (10): 2205- 2210
doi: 10.1029/WR025i010p02205
9 TIAN H H, WEI C F, WEI H Z, et al Freezing and thawing characteristics of frozen soils: bound water content and hysteresis phenomenon[J]. Cold Regions Science and Technology, 2014, 103 (1): 74- 81
10 YOSHIKAWA K, OVERDUIN P P Comparing unfrozen water content measurements of frozen soil using recently developed commercial sensors[J]. Cold Regions Science and Technology, 2005, 42 (3): 250- 256
doi: 10.1016/j.coldregions.2005.03.001
11 SWENSON J, BERGMAN R, LONGEVILLE S Experimental support for a dynamic transition of confined water[J]. Journal of Non-Crystalline Solids, 2002, 307-310: 573- 578
doi: 10.1016/S0022-3093(02)01488-6
12 KOZLOWSKI T A comprehensive method of determining the soil unfrozen water curves: 1. application of the term of convolution[J]. Cold Regions Science and Technology, 2003, 36: 71- 79
doi: 10.1016/S0165-232X(03)00007-7
13 KOZLOWSKI T A comprehensive method of determining the soil unfrozen water curves: 2. stages of the phase change process in frozen soil-water system[J]. Cold Regions Science and Technology, 2003, 36: 81- 92
doi: 10.1016/S0165-232X(03)00006-5
14 FABBRI A, FEN-CHONG T, COUSSY O Dielectric capacity, liquid water content, and pore structure of thawing-freezing materials[J]. Cold Regions Science and Technology, 2006, 44: 52- 66
doi: 10.1016/j.coldregions.2005.07.001
15 LOCH J P G Thermodynamic equilibrium between ice and water in porous media[J]. Soil Science, 1978, 126 (2): 77- 80
doi: 10.1097/00010694-197808000-00002
16 WEI C F A theoretical framework for modeling the chemomechanical behavior of unsaturated soils[J]. Vadose Zone Journal, 2014, 13 (9): 1- 21
17 ZHOU J Z, WEI C F, LAI Y M, et al Application of the generalized clapeyron equation to freezing point depression and unfrozen water content[J]. Water Resources Research, 2018, 54 (11): 9412- 9431
doi: 10.1029/2018WR023221
18 SPEIGHT J G. Lange’s handbook of chemistry [M]. 16th ed. New York: McGraw-Hill Professional Publishing, 2005.
19 BROOKS R H, COREY A T. Hydraulic properties of porous media [M]. Fort Collins: Colorado State University, 1964.
20 马田田, 韦昌富, 周家作, 等 土体冻结特征曲线和持水特性[J]. 岩土工程学报, 2015, 37 (Suppl. 1): 172- 177
MA Tian-tian, WEI Chang-fu, ZHOU Jia-zuo, et al Freezing characteristic curves and water retention characteristics of soils[J]. Chinese Journal of Geotechnical Engineering, 2015, 37 (Suppl. 1): 172- 177
21 周家作, 谭龙, 韦昌富, 等 土的冻结温度与过冷温度试验研究[J]. 岩土力学, 2015, 36 (3): 777- 785
ZHOU Jia-zuo, TAN Long, WEI Chang-fu, et al Experimental study on freezing temperature and subcooling temperature of soil[J]. Rock and soil mechanics, 2015, 36 (3): 777- 785
[1] 李建, 刘猛, 段钰锋, 许超. 污泥掺混褐煤水热制固体燃料的理化特性[J]. 浙江大学学报(工学版), 2016, 50(2): 327-332.
[2] 毛华臻, 王飞, 毛飞燕, 池涌, 陆胜勇, 岑可法. 水热处理对污泥水分分布的影响[J]. 浙江大学学报(工学版), 2016, 50(12): 2283-2288.
[3] 张旭,刘建忠,吴君宏,赵琛杰,周俊虎,岑可法. 水分随煤阶及水热变化的核磁共振研究[J]. 浙江大学学报(工学版), 2016, 50(1): 123-128.
[4] 戴兴虎,钱沄涛,唐凤仙,居斌. 基于图表标题信息的在线生物文献MRI图像检测[J]. J4, 2012, 46(7): 1307-1313.
[5] 周水琴, 应义斌, 商德胜. 基于形态学的香梨褐变核磁共振成像无损检测[J]. J4, 2012, 46(12): 2141-2145.
[6] 闫丹丹 张孝通 朱善安 贺斌. 头部异物两步核磁共振电阻抗成像仿真研究[J]. J4, 2008, 42(4): 661-666.