Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (11): 2204-2213    DOI: 10.3785/j.issn.1008-973X.2020.11.016
机械工程     
TBM钢拱架拼接机械手抓取对接机构
何源福1(),夏毅敏1,*(),龙斌2,邓朝辉3,雷茂林2,姚捷3
1. 中南大学 机电工程学院,高性能复杂制造国家重点实验室,湖南 长沙 410083
2. 中国铁建重工集团有限公司,湖南 长沙 410100
3. 中铁第四勘察设计院集团有限公司,湖北 武汉 430063
Grasping docking mechanism of TBM steel arch splicing robot
Yuan-fu HE1(),Yi-min XIA1,*(),Bin LONG2,Zhao-hui DENG3,Mao-lin LEI2,Jie YAO3
1. College of Mechanical and Electrical Engineering, State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, China
2. China Railway Construction Heavy Industry Co. Ltd, Changsha 410100, China
3. China Railway Siyuan Survey and Design Group Co. Ltd, Wuhan 430063, China
 全文: PDF(1876 KB)   HTML
摘要:

为了提高钢拱架拼接效率,降低人工作业对施工的影响,提出隧道掘进机(TBM)钢拱架拼接机械手的抓取对接机构. 利用图谱法对抓取对接机构进行构型设计,根据机构功能实现方式,将机构分解成2个支链,确定其自由度(DOF)空间和约束空间;根据线图的功能等效性,得到各支链自由度空间的若干同维子空间,配置合理的支链运动副,通过叠加组合,得到机构整体构型;建立机构的运动学模型,推导出机构各滑块位置与转动角的逆解;给出机构性能指标,利用螺旋理论,分析机构抓取模块的传递性能,结果表明,抓取对接机构的全局传递指标达到至少0.75,具有较好的传递性能,且其工作空间最大取值应小于π/2. 制作抓取对接机构的样机,对钢拱架拼接过程进行实验,验证机构的可行性.

关键词: TBM钢拱架拼接抓取对接机构图谱法构型设计性能指标    
Abstract:

A grasping docking mechanism for tunnel boring machine (TBM) steel arch splicing manipulators was proposed to improve the splicing efficiency of steel arch and reduce the impact of manual work on construction. Firstly, the configuration of the grasping docking mechanism was constructed by the graphic method. The mechanism was decomposed into two branch chains according to the mechanism function realization method, and the degree of freedom (DOF) space and the constraint space were obtained. Some homogenous subspaces of the DOF space of each branch chain were obtained according to the functional equivalence of the line graph. The overall configuration of the mechanism was obtained by superposing and combining the motion pairs of branch chains which were reasonable for each homogenous subspace. Then, the kinematics model of the mechanism was established, and the inverse solutions of the position and rotation angle of each slider were obtained. The performance index of the mechanism was proposed. The transmission performance of the grasp module was analyzed by using the screw theory, and results show that the global transfer index of the grasping docking mechanism reached at least 0.75, which has good transfer performance, and the maximum value of its working space should be less than π/2. Finally, the prototype of the grasping docking mechanism was made, and experiments were conducted on the grasping process of the steel arch to verify the feasibility of the mechanism.

Key words: TBM steel arch splicing    grasping docking mechanism    graphic method    configuration design    performance indicator
收稿日期: 2019-11-18 出版日期: 2020-12-15
CLC:  U 455  
基金资助: 国家重点研发计划资助项目(2017YFB1302600);湖南省科技重大专项资助项目(2019GK1010);长沙市科技计划重大专项资助项目(kq1703022);中南大学研究生自主探索创新资助项目(2019zzts514)
通讯作者: 夏毅敏     E-mail: 173712148@csu.edu.cn;xiaymj@mail.csu.edu.cn
作者简介: 何源福(1995—),男,硕士生,从事钢拱架安装机器人研究. orcid.org/0000-0003-0526-3937. E-mail: 173712148@csu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
何源福
夏毅敏
龙斌
邓朝辉
雷茂林
姚捷

引用本文:

何源福,夏毅敏,龙斌,邓朝辉,雷茂林,姚捷. TBM钢拱架拼接机械手抓取对接机构[J]. 浙江大学学报(工学版), 2020, 54(11): 2204-2213.

Yuan-fu HE,Yi-min XIA,Bin LONG,Zhao-hui DENG,Mao-lin LEI,Jie YAO. Grasping docking mechanism of TBM steel arch splicing robot. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2204-2213.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.11.016        http://www.zjujournals.com/eng/CN/Y2020/V54/I11/2204

转动自由度线 移动自由度线 约束线 力偶约束线
表 1  线图的表示形式及意义
图 1  部分基本型线空间的映射
图 2  图谱法构型设计流程图
图 3  人工拼接钢拱架作业
图 4  钢拱架拼接示意图
图 5  新型钢拱架结构
同维子空间 运动简图
表 2  线图的同维子空间及运动副
图 6  下卡爪支链的自由度空间
同维子空间 运动简图
表 3  线图1的同维子空间及运动副
同维子空间 运动简图
表 4  线图2的同维子空间及运动副
图 7  上卡爪支链的自由度
图 8  上、下卡爪支链结构叠加
图 9  抓取对接机构的可选构型
图 10  抓取对接机构的结构示意图
图 11  抓取模块结构示意图
图 12  抓取对接机构的运动学建模
图 13  钢拱架抓取示意图
图 14  抓取模块闭环机构示意图
图 15  工作空间与全局传递指标的关系
时间/s 控制速度/(mm·s?1
1号油缸 2号油缸 3号油缸 4号油缸
0~10 0 0 12.50 12.00
10~20 13.00 0 0 0
20~40 0 0 6.25 5.00
40~60 0 6.25 0 0
表 5  机构各油缸的速度控制
图 16  抓取对接机构样机
图 17  上、下卡爪速度曲线
1 霍军周, 吴瀚洋, 朱冬, 等 TBM机电耦合建模与同步控制策略对比分析[J]. 机械工程学报, 2018, 54 (1): 120- 126
HUO Jun-zhou, WU Han-yang, ZHU Dong, et al TBM electromechanical coupling modeling and comparative analysis of synchronous drive control strategy[J]. Journal of Mechanical Engineering, 2018, 54 (1): 120- 126
doi: 10.3901/JME.2018.01.120
2 夏毅敏, 钱聪, 李正光, 等 隧道掘进机支撑推进系统振动特性[J]. 浙江大学学报: 工学版, 2018, 52 (2): 233- 239
XIA Yi-min, QIAN Cong, LI Zheng-guang, et al Vibration characteristics of TBM supporting-thrusting system[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (2): 233- 239
3 陈玉羲, 龚国芳, 石卓, 等 基于施工数据的TBM支撑推进协调控制系统[J]. 浙江大学学报: 工学版, 2019, 53 (2): 250- 257
CHEN Yu-xi, GONG Guo-fang, SHI Zhuo, et al Coordinated control of gripper and thrust system for TBM based on construction data[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (2): 250- 257
4 MITELMAN A, ELMO D Analysis of tunnel-support interaction using an equivalent boundary beam[J]. Tunnelling and Underground Space Technology, 2019, 84: 218- 226
doi: 10.1016/j.tust.2018.11.021
5 HUANG C K A general method for developing different types of 3-DOF and 6-DOF isotropic manipulators[J]. Journal of the Chinese Society of Mechanical Engineers, 2019, 40 (2): 99- 108
6 BABIN V, GOSSELIN C Picking, grasping, or scooping small objects lying on flat surfaces: a design approach[J]. International Journal of Robotics Research, 2018, 37 (12): 1484- 1499
doi: 10.1177/0278364918802346
7 于红英, 曾重元, 郭震 少自由度变胞并联机构综合设计方法[J]. 哈尔滨工业大学学报, 2018, 50 (1): 42- 49
YU Hong-ying, ZENG Zhong-yuan, GUO Zhen Type synthesis method of lower-mobility metamorphic parallel mechanism[J]. Journal of Harbin Institute of Technology, 2018, 50 (1): 42- 49
8 李树军, 王洪光, 李小彭, 等 面向作业任务的约束变胞机构设计方法[J]. 机械工程学报, 2018, 54 (3): 26- 35
LI Shu-jun, WANG Hong-guang, LI Xiao-peng, et al Task-orientated design method of practical constraint metamorphic mechanisms[J]. Journal of Mechanical Engineering, 2018, 54 (3): 26- 35
doi: 10.3901/JME.2018.03.026
9 YANG Y, PENG Y, PU H Y, et al Design of 2-degrees-of-freedom (DOF) planar translational mechanisms with parallel linear motion elements for an automatic docking device[J]. Mechanism and Machine Theory, 2018, 121: 398- 424
doi: 10.1016/j.mechmachtheory.2017.11.005
10 EROL O, GOGU G, MEZOUAR Y A study on dexterous grasps via parallel manipulation analogy[J]. Journal of Intelligent and Robotic Systems, 2017, 87 (1): 3- 14
11 LAMBERT P, HERDER J L A 7-DOF redundantly actuated parallel haptic device combining 6-DOF manipulation and 1-DOF grasping[J]. Mechanism and Machine Theory, 2019, 134: 349- 364
doi: 10.1016/j.mechmachtheory.2019.01.002
12 GAO C Q, HUANG H L, LI B, et al Design of a truss-shaped deployable grasping mechanism using mobility bifurcation[J]. Mechanism and Machine Theory, 2019, 139: 346- 358
doi: 10.1016/j.mechmachtheory.2019.05.003
13 LIANG D Y, ZHANG W Z PASA-GB hand: a novel parallel and self-adaptive robot hand with gear-belt mechanisms[J]. Journal of Intelligent and Robotic Systems, 2018, 90: 3- 17
doi: 10.1007/s10846-017-0644-0
14 BORISOV I I, BORISOV O I, GROMOV V S, et al The UHVAT gripper: usable holding versatile adjustable tool to grasp different objects[J]. IFAC-PapersOnLine, 2018, 51 (11): 722- 727
doi: 10.1016/j.ifacol.2018.08.404
15 LU Y, ZHANG C G, CAO C J, et al Analysis of coordinated grasping kinematics and optimization of grasping force of a parallel hybrid hand[J]. International Journal of Advanced Robotic Systems, 2017, 14 (3): 1- 14
16 MAHYAR A, HAMED R, TALEBI H A, et al Optimal adaptive Jacobian internal forces controller for multiple whole-limb manipulators in the presence of kinematic uncertainties[J]. Mechatronics, 2018, 53: 1- 7
doi: 10.1016/j.mechatronics.2018.05.005
17 HWANG S, KIM H, CHOI Y, et al Design optimization method for 7 DOF robot manipulator using performance indices[J]. International Journal of Precision Engineering and Manufacturing, 2017, 18 (3): 293- 299
doi: 10.1007/s12541-017-0037-0
18 SHAO Z F, MO J, TANG X Q, et al Transmission index research of parallel manipulators based on matrix orthogonal degree[J]. Chinese Journal of Mechanical Engineering, 2017, 30 (6): 122- 131
19 ASSAL S F M A novel planar parallel manipulator with high orientation capability for a hybrid machine tool: kinematics, dimensional synthesis and performance evaluation[J]. Robotica, 2017, 35 (5): 1031- 1053
doi: 10.1017/S0263574715000958
20 XIE F, LI T, LIU X Type synthesis of 4-DOF parallel kinematic mechanisms based on grassmann line geometry and atlas method[J]. Chinese Journal of Mechanical Engineering, 2013, 26 (6): 1073- 1081
doi: 10.3901/CJME.2013.06.1073
21 秦超, 梁喜凤, 路杰, 等 七自由度番茄收获机械手的轨迹规划与仿真[J]. 浙江大学学报: 工学版, 2018, 52 (7): 1260- 1266
QIN Chao, LIANG Xi-feng, LU Jie, et al Trajectory planning and simulation for 7-DOF tomato harvesting manipulator[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (7): 1260- 1266
22 XIE F, LIU X J, WANG C Design of a novel 3-DOF parallel kinematic mechanism: type synthesis and kinematic optimization[J]. Robotica, 2015, 33 (3): 622- 637
doi: 10.1017/S0263574714000551
23 李研彪, 郑航, 徐梦茹, 等 5-PSS/UPU并联机构的多目标性能参数优化[J]. 浙江大学学报: 工学版, 2019, 53 (4): 654- 663
LI Yan-biao, ZHENG Hang, XU Meng-ru, et al Multi-target parameters of performance optimization for 5-PSS/UPU parallel mechanism[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (4): 654- 663
[1] 李研彪,郑航,徐梦茹,罗怡沁,孙鹏. 5-PSS/UPU并联机构的多目标性能参数优化[J]. 浙江大学学报(工学版), 2019, 53(4): 654-663.
[2] 刘永利 徐兵 杨华勇. 液压电梯控制系统的两级控制器设计[J]. J4, 2004, 38(2): 222-225.