Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (7): 1390-1400    DOI: 10.3785/j.issn.1008-973X.2020.07.018
交通工程、水利工程、土木工程     
高心墙堆石坝弹塑性动力反应分析及地震易损性研究
靳聪聪1,2(),迟世春1,2,*()
1. 大连理工大学 海岸与近海工程国家重点实验室,辽宁 大连 116024
2. 大连理工大学 水利工程学院,辽宁 大连 116024
Elasto-plastic dynamic response analysis and seismic fragility research of high core earth-rockfill dam
Cong-cong JIN1,2(),Shi-chun CHI1,2,*()
1. State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China
2. School of Hydraulic Engineering, Dalian University of Technology, Dalian 116024, China
 全文: PDF(2380 KB)   HTML
摘要:

采用改进PZC弹塑性模型和动力固结有限元程序SWANDYNE II,对糯扎渡高土石坝进行动力分析,直接得到大坝永久变形,为地震易损性研究提供计算基础. 采用坝顶相对震陷率作为易损性性能参数,根据糯扎渡高土石坝所在区域的主要潜在震源区内统计地震情况,从PEER中选取60条吻合较好的地震动记录. 基于性能的大坝抗震设防水准 和土石坝震害等级,提出适合高土石坝的性能水平划分. 引入人工神经网络方法,结合多条带分法,提出基于ANN-MSA的高土石坝地震易损性分析方法. 该方法通过对选取的地震动记录调幅处理,利用SWANDYNE II程序对地震动进行分析,得到不同PGA的坝顶相对震陷率,作为训练样本和检验样本. 采用RBFNN对训练样本进行训练,利用训练和检验后的模型预测坝顶相对震陷率. 结合ANN预测结果和MSA方法,对糯扎渡高土石坝进行地震易损性分析,计算出该大坝的三维地震易损性曲面.

关键词: 改进PZC弹塑性模型SWANDYNE II程序ANN方法MSA方法    
Abstract:

The dynamic analysis of Nuozhadu high core earth-rockfill dam was conducted by adopting the improved PZC elastic-plastic model and the dynamic consolidation finite element program SWANDYNE II. The permanent deformation of the dam was obtained, and the calculation basis for seismic fragility analysis was provided. The crest relative seismic settlement rate was selected as the fragility performance parameter. The 60 well-matched ground motion records were picked from PEER according to the statistical earthquake situation in the main potential seismic source area of Nuozhadu high core earth-rockfill dam. The grade of performance level of the high core earth-rockfill dam was proposed combined with the performance of the dam anti-seismic level and the earthquake damage grade of core earth-rockfill dams. The seismic fragility analysis approach for the high earth-rockfill dam based on ANN-MSA was provided by introducing the artificial neural network method and combined with multi-strip method. The SWANDYNE II program was used to analyze the seismic ground motion by processing the selected seismic records. The relative seismic subsidence rates of the different PGAs can be obtained, which were used as training samples and test samples. RBFNN was utilized to train the training samples. The model through training and testing can well predict the relative seismic settlement rate. The seismic fragility of Nuozhadu high core earth-rockfill dam was analyzed combined with the prediction results of ANN and MSA method, and the three-dimensional seismic fragility surface of the dam was obtained.

Key words: modified PZC elasto-plastic model    SWANDYNE II program    ANN method    MSA approach
收稿日期: 2019-12-23 出版日期: 2020-07-05
CLC:  TV 641  
基金资助: 国家重点研发计划资助项目(2016YFB0201001)
通讯作者: 迟世春     E-mail: jincong3623@mail.dlut.edu.cn;schchi@dlut.edu.cn
作者简介: 靳聪聪(1987—),男,博士生,从事高土石坝地震易损性及抗震可靠度研究. E-mail: jincong3623@mail.dlut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
靳聪聪
迟世春

引用本文:

靳聪聪,迟世春. 高心墙堆石坝弹塑性动力反应分析及地震易损性研究[J]. 浙江大学学报(工学版), 2020, 54(7): 1390-1400.

Cong-cong JIN,Shi-chun CHI. Elasto-plastic dynamic response analysis and seismic fragility research of high core earth-rockfill dam. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1390-1400.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.07.018        http://www.zjujournals.com/eng/CN/Y2020/V54/I7/1390

图 1  大坝有限元模型
筑坝料 Ko Go Mg Mf αg αf H0 β0 β1 γ' γden Hu0 γu
堆石料Ⅰ 930 810 1.61 1.24 0.45 0.45 800 3.1 0.10 40 130 1400 6.5
堆石料Ⅱ 1050 960 1.55 1.17 0.45 0.45 1000 3.3 0.15 40 130 1400 7.5
心墙料 240 190 1.05 0.79 0.45 0.45 1400 3.2 0.13 16 80 900 4.3
表 1  改进PZC模型参数
图 2  掺砾土料静力试验与改进PZC模型计算结果的比较
图 3  掺砾土料动力试验与改进PZC模型计算结果比较
图 4  大、小主应力等值线
P100 Amax/(cm·s-2) T1/ s T2/ s βmax γ
2% 385 0.12 0.7 2.6 1
表 2  地震动峰值加速度参数
图 5  地震动输入加速度时程
图 6  永久位移的等值线
图 7  大坝轮廓线地震后变形图
震级分档 地震数量
5≤M<6 61
6≤M<7 22
7≤M<8 6
表 3  历史破坏性地震统计表
图 8  研究区域地震分布图
名称 震级上限 震源编号
普洱-思茅 7.0 4
临沧东 6.5 6
莲花塘 6.5 7
耿马-澜沧 8.0 10
勐海 7.5 11
勐海西南 7.5 12
表 4  主要潜在震源区情况
图 9  潜在震源区分布
图 10  60条地震动加速度反应谱曲线
震害等级 震害状态
Ⅰ 级 宏观上无震害
Ⅱ 级 有宽度小于5 mm纵向裂缝,宏观上无沉降,需要作简单的处理
Ⅲ 级 有多条宽度大于5 mm纵向裂缝,宏观上可以看出沉降,有横向裂缝,需要进行整修和加固
Ⅳ 级 坝体产生滑裂,坝坡局部隆起、凹陷或滑坡,需要进行大修和加固
Ⅴ 级 坝坡大面积滑坡,坝基失稳,坝体陷落,设置垮坝,需要重修
表 5  土石坝震害等级划分标准
图 11  地震动峰值加速度与坝顶相对震陷率的关系
性能水平 性能描述 δ
PL 1 轻微破坏 坝顶震陷量不超过50 cm (0.5/H)×100%
PL 2 中等破坏 50年超越概率10%作用下坝顶相对震陷率 1.8 ${a_{\max }}$
PL 3 较重破坏 100年超越概率2%作用下坝顶相对震陷率 1.8 ${a_{\max }}$
PL 4 严重破坏 100年超越概率2%作用下坝顶相对震陷率加1 m安全超高 1.8 ${a_{\max }}$+(1.0/H)×100%
表 6  高土石坝性能水平划分
图 12  Loma Prieta地震波
图 13  坝体永久变形等值线图
训练样本 检验样本
编号 PGA/g δf/% δR/% E/% 编号 PGA/g δf/% δR/% E/%
1 0.02 0.0129 0.0125 ?3.10 31 0.04 0.0321 0.0323 0.65
2 0.06 0.0461 0.0454 ?1.65 32 0.08 0.0793 0.0802 1.13
3 0.10 0.1128 0.1159 2.78 33 0.14 0.1681 0.1669 ?0.70
4 0.12 0.1466 0.1512 3.16 34 0.18 0.2350 0.2320 ?1.29
5 0.16 0.2154 0.2221 3.15 35 0.24 0.3358 0.3382 0.71
6 0.20 0.2906 0.2937 1.07 36 0.28 0.4142 0.4138 ?0.08
7 0.22 0.3216 0.3298 2.54 37 0.34 0.5465 0.5337 ?2.34
8 0.26 0.3946 0.4027 2.04 38 0.38 0.6256 0.6174 ?1.30
9 0.30 0.4779 0.4767 ?0.24 39 0.44 0.7484 0.7481 ?0.04
10 0.32 0.5078 0.5144 1.30 40 0.48 0.8334 0.8385 0.61
11 0.36 0.5857 0.5907 0.85 41 0.54 0.9656 0.9784 1.32
12 0.40 0.6998 0.6689 0.44 42 0.58 1.0757 1.0743 ?0.13
29 0.96 2.0869 2.0886 0.08 49 0.94 2.0247 2.0223 ?0.11
30 1.00 2.2146 2.2230 0.38 50 0.98 2.1503 2.1358 ?0.67
表 7  坝顶相对震陷率RBFNN训练结果
图 14  地震易损性曲面
1 吴永康, 王翔南, 董威信, 等 考虑流固耦合作用的高土石坝动力分析[J]. 岩土工程学报, 2015, 37 (11): 2007- 2013
WU Yong-kang, WANG Xiang-nan, DONG Wei-xin, et al Dynamic analyses of a high earth-rockfill dam considering effects of solid-fluid coupling[J]. Chinese Journal of Geotechnical Engineering, 2015, 37 (11): 2007- 2013
doi: 10.11779/CJGE201511010
2 蔡袁强, 于玉贞, 袁晓铭, 等 土动力学与岩土地震工程[J]. 土木工程学报, 2016, 49 (5): 9- 30
CAI Yuan-qiang, YU Yu-zhen, YUAN Xiao-ming, et al Soil dynamics and geotechnical earthquake engineering[J]. China Civil Engineering Journal, 2016, 49 (5): 9- 30
3 高原, 方火浪 基于三维多重机构模型的土石坝地震反应分析[J]. 防灾减灾工程学报, 2013, 33 (4): 375- 382
GAO Yuan, FANG Huo-lang Seismic response analysis of rockfill dam based on 3D multi-mechanism model[J]. Journal of Disaster Prevention and Mitigation Engineering, 2013, 33 (4): 375- 382
4 KHOEI A R, AZAMI A R, HAERI S M Implementation of plasticity based models in dynamic analysis of earth and rockfill dams: a comparison of Pastor-Zienkiewicz and cap models[J]. Computers and Geotechnics, 2004, 31 (5): 384- 410
doi: 10.1016/j.compgeo.2004.04.003
5 LI Tong-chun, ZHANG Hong-yang. Dynamic parameter verification of PZ model and its application of dynamic analysis on rockfill dam [C] // Earth and Space 2010: Engineering, Science, Construction, and Operations in Challenging Environments. Hawaii: ASCE, 2010: 2706-2713.
6 于玉贞, 卞锋 高土石坝地震动力响应特征弹塑性有限元分析[J]. 世界地震工程, 2010, (Suppl.1): 341- 345
YU Yu-zhen, BIAN Feng Elasto-plastic FEM analysis of dynamic response of high earth-rockfill dams during earthquake[J]. World Earthquake Engineering, 2010, (Suppl.1): 341- 345
7 孔宪京, 邹德高, 徐斌, 等 紫坪铺面板堆石坝三维有限元弹塑性分析[J]. 水力发电学报, 2013, 32 (2): 213- 222
KONG Xian-jing, ZOU De-gao, XU Bin, et al Three -dimensional finite element elasto-plastic analysis of Zipingpu concrete faced rock-fill dam[J]. Journal of Hydroelectric Engineer, 2013, 32 (2): 213- 222
8 魏匡民, 陈生水, 李国英, 等 高土石坝动力弹塑性与黏弹性分析方法比较研究[J]. 岩石力学与工程学报, 2019, 38 (5): 1018- 1029
WEI Kuang-min, CHEN Sheng-shui, LI Guo-ying, et al Study on dynamic elastoplastic and viscoelastic analysis methods for high earth-rock dams[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38 (5): 1018- 1029
9 王笃波, 刘汉龙, 于陶, 等 基于变形的土石坝地震易损性分析[J]. 岩土工程学报, 2013, 35 (5): 814- 819
WANG Du-bo, LIU Han-long, YU Tao, et al Seismic fragility analysis for earth-rockfill dams based on deformation[J]. Chinese Journal of Geotechnical Engineering, 2013, 35 (5): 814- 819
10 孔宪京, 庞锐, 邹德高, 等 基于IDA的高面板堆石坝抗震性能评价[J]. 岩土工程学报, 2018, 40 (6): 978- 984
KONG Xian-jing, PANG Rui, ZOU De-gao, et al Seismic performance evaluation of high CFRDs based on incremental dynamic analysis[J]. Chinese Journal of Geotechnical Engineering, 2018, 40 (6): 978- 984
doi: 10.11779/CJGE201806002
11 庞锐, 孔宪京, 邹德高, 等 基于MSA法的高心墙堆石坝地震沉降易损性分析[J]. 水利学报, 2017, 48 (7): 866- 873
PANG Rui, KONG Xian-jing, ZOU De-gao, et al Seismic subsidence fragility analysis of high CRFDs based on MSA[J]. Journal of Hydraulic Engineering, 2017, 48 (7): 866- 873
12 CHAN A H C. User manual for Diana Swandyne Ⅱ[R]. Glasgow: Glasgow University, 1989.
13 ZIENKIEWICZ O C, CHAN A H C, PASTOR M, et al. Computational geomechanics with special reference to earthquake engineering [M]. New York: Wiley, 1998.
14 ZIENKIEWICZ O C, MROZ Z Generalized plasticity formulation and applications to geomechanics[J]. Mechanics of Engineering Materials, 1984, 44 (3): 655- 680
15 PASTOR M Modelling of anisotropic sand behavior[J]. Computers and Geotechnics, 1991, 11 (3): 173- 208
doi: 10.1016/0266-352X(91)90019-C
16 SASSA S, SEKIGUCHI H Analysis of waved-induced liquefaction of sand beds[J]. Getechnique, 2001, 51 (2): 115- 126
doi: 10.1680/geot.2001.51.2.115
17 LING H I, LIU Hua-bei Pressure-level dependency and densification behavior of sand through a generalized plasticity model[J]. Journal of Engineering Mechanics, 2003, 129 (8): 851- 860
doi: 10.1061/(ASCE)0733-9399(2003)129:8(851)
18 MANZANAL D, MERODO J A F, PASTOR M Generalized plasticity state parameter-based model for saturated and unsaturated soils. Part1: saturated state[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2011, 35 (12): 1347- 1362
doi: 10.1002/nag.961
19 XU B, ZOU D, LIU H Three-dimensional simulation of the construction process of the Zipingpu concrete face rockfill dam based on a generalized plasticity model[J]. Computers and Geotechnics, 2012, 43 (6): 143- 154
20 LIU H, ZOU D, LIU J Constitutive modeling of dense gravelly soils subjected to cyclic loading[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2014, 38 (14): 1503- 1518
doi: 10.1002/nag.2269
21 PASTOR M, ZIENKIEWICZ O C, CHAN A H C Generalized plasticity and the modeling of soil behavior[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1990, 14 (3): 151- 190
doi: 10.1002/nag.1610140302
22 董威信. 高心墙堆石坝流固耦合弹塑性地震动力响应分析[D]. 北京: 清华大学, 2015.
DONG Wei-xin. Elasto plastic fluid-solid coupling analysis of seismic response of high core-wall rockfill dam [D]. Beijing: Tsinghua University, 2015.
23 HARDIN B O, RICHART F E Elastic wave velocities in granular soils[J]. Journal of the Soil Mechanics and Foundation Engineers Division, ASCE, 1963, 89 (1): 603- 624
24 CHAN A H C. User manual for SM2D-soil model tester for 2-dimensional application [R]. Birmingham: University of Birmingham, 1995.
25 靳聪聪, 迟世春, 聂章博 土体PZC弹塑性本构模型参数的确定[J]. 解放军理工大学学报:自然科学版, 2018, 19 (1): 1- 6
JIN Cong-cong, CHI Shi-chun, NIE Zhang-bo Seismic fragility assessment of high earth-rockfill dam considering seismic wave randomness and water level[J]. Journal of PLA University of Science and Technology: Natural Science Edition, 2018, 19 (1): 1- 6
26 杜晓东. 心墙掺砾土料的动强度特性研究[D]. 大连: 大连理工大学, 2014.
DU Xiao-dong. Study on dynamic strength characteristics of gravelly soil for the core wall of earth-rock dam [D]. Dalian: Dalian University of Technology, 2014.
27 聂章博, 迟世春 循环荷载作用下心墙掺砾土动应力-应变孔压模型[J]. 大连理工大学学报, 2016, 56 (6): 624- 630
NIE Zhang-bo, CHI Shi-chun Dynamic stress-strain pore water pressure model of core gravelly soil under cyclic loading[J]. Journal of Dalian University of Technology, 2016, 56 (6): 624- 630
doi: 10.7511/dllgxb201606010
28 杜晓东, 迟世春, 聂章博 掺砾心墙土料的动强度特性研究[J]. 水利与建筑工程学报, 2014, (3): 110- 114
DU Xiao-dong, CHI Shi-chun, NIE Zhang-bo Study on dynamic strength characteristics of gravel soil material[J]. Journal of Water Resources and Architectural Engineering, 2014, (3): 110- 114
29 BAKER J W Efficient analytical fragility function fitting using dynamic structural analysis[J]. Earthquake Spectra, 2015, 31 (1): 579- 599
doi: 10.1193/021113EQS025M
30 PADGETT J E, NIELSON B G, DESROCHES R Selection of optimal intensity measures in probabilistic seismic demand models of highway bridge portfolios[J]. Earthquake Engineering and Structural Dynamics, 2008, 37 (5): 711- 726
doi: 10.1002/eqe.782
31 生命线工程地震破坏等级划分: GB/T 24336-2009 [S]. 北京: 人民交通出版社, 2009.
32 水电水利规划设计总院. 汶川地震灾区水电工程震损调查及工程抗震复核[R]. 北京: 水电水利规划设计总院, 2008.
33 王琪, 朱晟, 冯燕明 基于性能的高土石坝抗震风险分析[J]. 水力发电, 2016, 42 (4): 57- 60
WANG Qi, ZHU Sheng, FENG Yan-ming Seismic risk analysis of high earth-rock dam based on performance[J]. Water Power, 2016, 42 (4): 57- 60
doi: 10.3969/j.issn.0559-9342.2016.04.014
34 SWAISGOOD J R. Embankment dam deformations caused by earthquakes [C]//2003 Pacific Conference on Earthquake Engineering. Christchurch: [s.n.], 2003.
35 朱亚姬, 贾宇峰, 陈崇茂 高心墙堆石坝地震永久变形特性分析[J]. 水电能源科学, 2011, 29 (8): 66- 70
ZHU Ya-ji, JIA Yu-feng, CHEN Chong-mao Characteristics analysis of permanent earthquake-induced deformation of high core rock-fill dam[J]. Water Resources and Power, 2011, 29 (8): 66- 70
doi: 10.3969/j.issn.1000-7709.2011.08.019
36 刘君, 刘博, 孔宪京 地震作用下土石坝坝顶沉降估算[J]. 水力发电学报, 2012, 31 (2): 183- 191
LIU Jun, LIU Bo, KONG Xian-jing Estimation of earthquake induced crest settlements of earth and rock fill dams[J]. Journal of Hydroelectric Engineering, 2012, 31 (2): 183- 191
37 梁海安. 土石坝震害预测及快速评估方法研究[D]. 哈尔滨: 中国地震局工程力学研究所, 2012.
LIANG Hai-an. Seismic damage prediction and emergency assessment of earth-rock dam [D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration, 2012.
38 邵磊, 迟世春, 李红军 温州.高心墙堆石坝极限抗震能力初探[J]. 岩土力学, 2011, 32 (12): 3827- 3832
SHAO Lei, CHI Shi-chun, LI Hong-jun Preliminary studies of ultimate aseismic capacity of high core rockfill dam[J]. Rock and Soil Mechanics, 2011, 32 (12): 3827- 3832
doi: 10.3969/j.issn.1000-7598.2011.12.046
[1] 刘万鸿,陈荣钱,邱若凡,林威,尤延铖. 通用的插值补充格子Boltzmann方法应用于计算气动声学[J]. 浙江大学学报(工学版), 2020, 54(8): 1637-1644.
[2] 周昊,芮淼,岑可法. 多孔介质内流体流动的大涡格子Boltzmann方法研究[J]. J4, 2012, 46(9): 1660-1665.
[3] 聂德明,林建忠. 模拟颗粒布朗运动的格子Boltzmann模型[J]. J4, 2009, 43(8): 1438-1442.