Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (5): 879-888    DOI: 10.3785/j.issn.1008-973X.2020.05.005
土木工程、交通工程     
基于弹性约束支承梁转角影响线的梁结构损伤诊断
周宇1(),狄生奎2,项长生2,李万润2
1. 安徽建筑大学 土木工程学院,安徽 合肥 230601
2. 兰州理工大学 土木工程学院,甘肃 兰州 730050
Beam structure damage detection based on rotational-angle-influence-lines of elastic-constrained-support beam
Yu ZHOU1(),Sheng-kui DI2,Chang-sheng XIANG2,Wan-run LI2
1. College of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China
2. School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, China
 全文: PDF(2227 KB)   HTML
摘要:

针对现有桥梁结构损伤诊断研究中,对实际主梁结构的边界支承条件不理想与截面参数不确定性考虑不充分的问题,提出考虑弹性转动与竖向约束的梁结构模型,引入截面不确定系数与局部损伤来模拟既有桥梁主梁. 推导得到主梁模型转角影响线解析式,提出基于弹性约束支承梁与转角影响线指标的损伤诊断方法与加载实施方案. 结合算例,研究测点位置、损伤程度、测试噪声对损伤诊断结果的影响,提出边界等效子结构模型试验验证所提方法. 研究表明,转角影响线差值曲率能精确定位、定量弹性约束支承梁的局部损伤,在损伤程度定量试验各工况中,最大相对误差为25%. 算例表明,在5%测试噪声时,仍可以定位梁结构局部损伤,且在梁端转动约束较弱时,损伤诊断敏感性较高.

关键词: 梁结构弹性约束支承转角影响线损伤诊断子结构试验    
Abstract:

The consideration of non-ideal supporting boundary and uncertainty of section parameters in actual bridge structure are insufficient in the research of beam bridge structure damage identification. Thus a beam structural model considering elastic rotation and vertical restraint was proposed, and the uncertainty coefficient of section parameters and local damage were introduced to simulate the existing beam structure. The analytical expression of the rotational-angle-influence-lines of elastic-constrained-support beam and the damage identification indicator based on that were derived, and the loading implementation scheme was proposed. The influence of measuring point, damage degree and measuring noise on the damage identification was investigated combined with the simulation cases. The experiment of the boundary equivalent substructure model was carried out to verify the proposed method. Research show that the curvature of rotational-angle-influence-lines difference can be used to accurately locate the local damage and effectively calculate the degree of existing beam structural damage, and the maximum relative errors of the damage degree solution are 25%. Simulation cases show that the proposed method can locate the damage positions under the condition of 5% test noise. The susceptibility of damage diagnosis is high when the rotation constraint is weak.

Key words: beam structure    elastic-constrained-support    rotational-angle-influence-line    damage identification    substructure experiment
收稿日期: 2019-08-17 出版日期: 2020-05-05
CLC:  U 466  
基金资助: 安徽省高校省级自然科学研究重点资助项目(KJ2019A0746);安徽建筑大学博士启动基金资助项目(2019QDZ08)
作者简介: 周宇(1989—),男,讲师,博士,从事结构健康监测研究. orcid.org/0000-0003-4743-241X. E-mail: yuzhou923@outlook.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
周宇
狄生奎
项长生
李万润

引用本文:

周宇,狄生奎,项长生,李万润. 基于弹性约束支承梁转角影响线的梁结构损伤诊断[J]. 浙江大学学报(工学版), 2020, 54(5): 879-888.

Yu ZHOU,Sheng-kui DI,Chang-sheng XIANG,Wan-run LI. Beam structure damage detection based on rotational-angle-influence-lines of elastic-constrained-support beam. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 879-888.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.05.005        http://www.zjujournals.com/eng/CN/Y2020/V54/I5/879

图 1  基于弹性约束支承梁转角影响线的梁结构损伤诊断技术思路
图 2  含局部损伤的弹性约束反承梁模型
图 3  弹性约束支承梁的变形分解模型
图 4  主梁刚体转动示意
图 5  主梁弯曲曲线
图 6  主梁受弯简化示意
图 7  连续梁桥截面尺寸
损伤工况 损伤位置 DE 测点位置 分析结果
G 5%、10%、20%、30% α 图9(a)
E 5%、10%、20%、30% α 图9(b)
F 5%、10%、20%、30% α 图9(c)
EF 5%、10%、20%、30% α 图9(d)
E 30% αα'α'' 图10(a)
E 30% αβγ 图10(b)
E 30%(噪声强度水平1%、3%、5%) α 图11(a)
E 5%、10%、20%(噪声强度水平5%) α 图11(b)
表 1  算例损伤工况及测点布置
图 8  算例损伤位置与测点位置
图 9  工况Ⅰ~Ⅳ损伤诊断结果
图 10  不同测点的诊断结果
图 11  含噪声损伤诊断工况
RILDC $EI$/(kN·m?2) $P$/kN $l$/m $x'$/m DE
计算值/% 模拟值/% 相对误差/%
2.441 4×10?8 2. 392 3×1010 2 942 40 20 28.42 30.00 5.27
表 2  G点损伤程度的计算值
图 12  子结构试验模型的实现方法与建模思路
图 13  竖向弹性支座设计图与倾角传感器安装
图 14  试验梁模型及配重安装
图 15  配重称量的影响线
图 16  损伤诊断试验工况
图 17  滚轴加载过程与模型局部损伤
图 18  无损模型的转角响应基准曲线
图 19  基于RILDC的损伤诊断试验结果
1 QIN S Q, GAO Z Y Developmentsandprospects of long-span high-speed railway bridge technologies in China[J]. Engineering, 2017, 3 (6): 787- 794
doi: 10.1016/j.eng.2017.11.001
2 RONCEN T, SINOU J J, LAMBELIN J P Non-linear vibrations of a beam with non-ideal boundary conditions and uncertainties-modeling, numerical simulations and experiments[J]. Mechanical Systems and Signal Processing, 2018, 110: 165- 179
doi: 10.1016/j.ymssp.2018.03.013
3 王书报, 张红光, 单俊鸿 一类非理想杆端约束下的转角位移方程[J]. 工程力学, 2004, 21 (3): 201- 203
WANG Shu-bao, ZHANG Hong-guang, SHAN Jun-hong Slope-deflection equation with a type of non-ideal constraints at end of beam[J]. Engineering Mechanics, 2004, 21 (3): 201- 203
doi: 10.3969/j.issn.1000-4750.2004.03.037
4 孙珂, 张延庆 基于位移影响线曲率的小半径弯桥损伤识别[J]. 浙江大学学报:工学版, 2016, 50 (4): 727- 734
SUN Ke, ZHANG Yan-qing Damage identification of small-radius curved bridge based on curvature of displacement influence line[J]. Journal of Zhejiang University: Engineering Science, 2016, 50 (4): 727- 734
5 李杰, 任晓丹 混凝土随机损伤力学研究进展[J]. 建筑结构学报, 2014, 35 (4): 20- 29
LI Jie, REN Xiao-dan Recent developments on stochastic damage mechanics for concrete[J]. Journal of Building Structures, 2014, 35 (4): 20- 29
6 WANG Y, QU W L Moving train loads identification on a continuous steel truss girder by using dynamic displacement influence line method[J]. International Journal of Steel Structures, 2011, 11 (2): 109- 115
doi: 10.1007/s13296-011-2001-7
7 HE W Y, ZHUS Y Moving load-induced response of damaged beam and its application in damage localization[J]. Journal of Vibration and Control, 2016, 22 (16): 3601- 3617
doi: 10.1177/1077546314564587
8 HE W Y, REN W X, ZHU S Y Damage detection of beam structures using quasi-static moving load induced displacement response[J]. Engineering Structures, 2017, 145: 70- 82
doi: 10.1016/j.engstruct.2017.05.009
9 王立宪, 周宇, 狄生奎, 等 考虑边界非理想的铁路桥梁挠度影响线分析与损伤识别[J]. 工程科学与技术, 2020, 52 (3): 123- 132
WANG Li-xian, ZHOU Yu, DI Sheng-kui, et al Influence line analysis and damage detection of railway bridge with non-ideal boundaries[J]. Advanced Engineering Sciences, 2020, 52 (3): 123- 132
10 ZHU S Y, CHEN Z W, CAI Q L, et al Locate damage in long-span bridges based on stress influence lines and information fusion technique[J]. Advances in Structural Engineering, 2014, 17 (8): 1089- 1102
doi: 10.1260/1369-4332.17.8.1089
11 张延庆, 孙珂 存在局部损伤时转动弹性支承铁路梁桥的位移影响线分析[J]. 铁道学报, 2016, 38 (2): 124- 130
ZHANG Yan-qing, SUN Ke Analysis of displacement influence line for railwaybridge with rotatable elastic support and local damage[J]. Journal of the China Railway Society, 2016, 38 (2): 124- 130
doi: 10.3969/j.issn.1001-8360.2016.02.016
12 CHEN Z W, ZHU S Y, XU Y L, et al Damage detection in long suspension bridges using stress influence lines[J]. Journal of Bridge Engineering, 2015, 20 (3): 05014013
doi: 10.1061/(ASCE)BE.1943-5592.0000681
13 WANG Y L, LIU X L, FANG C Q Damage detection of bridges by using displacement data of two symmetrical points[J]. Journal of Performance of Constructed Facilities, 2012, 26 (3): 300- 311
doi: 10.1061/(ASCE)CF.1943-5509.0000240
14 ZHOU Y, DI S K, XIANG C S, et al Damage identification of simply supported bridge based on rotational angle influence lines method[J]. Transactions of Tianjin University, 2018, 24 (6): 587- 601
doi: 10.1007/s12209-018-0135-9
[1] 王进,王向坤,扶建辉,陆国栋,金超超,陈燕智. 重载机器人横梁结构静动态特性分析与优化[J]. 浙江大学学报(工学版), 2021, 55(1): 124-134.
[2] 叶肖伟, 刘坦, 董传智, 陈斌. 基于卡尔曼滤波和中性轴位置的结构损伤识别[J]. 浙江大学学报(工学版), 2017, 51(10): 2012-2018.