Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (2): 364-372    DOI: 10.3785/j.issn.1008-973X.2019.02.020
计算机与控制工程     
兼顾远场和近场性能的便携式三维声纳设计
赵冬冬1(),刘雪松1,2,*(),周凡1,2,胡映天3,陈耀武1,2,4
1. 浙江大学 数字技术及仪器研究所,浙江 杭州 310027
2. 浙江省网络多媒体技术研究重点实验室,浙江 杭州 310027
3. 浙江大学 现代光学仪器国家重点实验室,浙江 杭州 310027
4. 浙江大学 工业控制技术国家重点实验室,浙江 杭州 310027
Design of portable three-dimensional sonar for both far-field and near-field
Dong-dong ZHAO1(),Xue-song LIU1,2,*(),Fan ZHOU1,2,Ying-tian HU3,Yao-wu CHEN1,2,4
1. Institute of Advanced Digital Technology and Instrumentation, Zhejiang University, Hangzhou 310027, China
2. Zhejiang Provincial Key Laboratory for Network Multimedia Technologies, Hangzhou 310027, China
3. State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027, China
4. National Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1503 KB)   HTML
摘要:

为了降低三维成像声纳系统的复杂度,并保证系统在整个水下探测范围内具有准确的波束图,提出兼顾远场和近场性能的便携式三维成像声纳设计方法. 该设计采用十字型阵列实现三维声纳成像,相比平面阵,极大降低了硬件复杂度,设备灵活轻便. 针对发射阵列,提出近场条件下的多频发射波束形成算法,根据十字型阵列的景深划分多个发射聚焦区间,并通过菲涅尔近似,配置各聚焦区间的时延参数,保证近场的波束性能. 针对接收阵列,提出优化的CZT (chirp zeta transform) 波束形成算法,可实现远场和近场条件下的快速波束形成,且计算量低于其他波束形成算法. 仿真实验表明,在近场聚焦区间内,该算法的角度分辨率和旁瓣高度变化差异较小,波束图性能稳定. 实际水下实验证实该设计可以在探测场景内获得清晰的水下三维图像.

关键词: 便携式三维声纳水下三维成像十字型阵列远场近场计算量需求    
Abstract:

A design of portable three-dimensional (3D) imaging sonar for both far-field and near-field was proposed, in order to reduce the complexity of 3D imaging sonar system and guarantee the accuracy of beam patterns for the whole underwater scene. The cross array, which could largely simplify the hardware complexity compared to the planar array, was used to achieve 3D sonar imaging and make the system portable. For the transmitting array, a near-field multiple-frequency transmitting algorithm was proposed to guarantee the performance of the beam pattern in the near field. The whole 3D scene was divided into several focal regions according to the depth of field, and the time-delay parameters for each focal region were calculated based on the Fresnel approximation. For the receiving array, an optimized chirp zeta transform beamforming was proposed to implement both far-field and near-field fast beamforming with lower computational requirement than those of other methods. The simulation experiments demonstrated that the angle resolution and the side lobe peak of the proposed algorithm had a relative small variation in the near field focal regions, and the performance of the beam pattern was stable. The real underwater tests verified that the proposed design could generate high quality underwater images within the detection scenes.

Key words: portable 3D sonar    underwater 3D imaging    cross array    far field    near field    computational requirement
收稿日期: 2018-06-19 出版日期: 2019-02-21
CLC:  TB 56  
通讯作者: 刘雪松     E-mail: zhaodd@zju.edu.cn;11015006@zju.edu.cn
作者简介: 赵冬冬(1990—),男,博士生,从事声纳信号处理、FPGA并行计算研究. orcid.org/0000-0001-6032-5083. E-mail: zhaodd@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
赵冬冬
刘雪松
周凡
胡映天
陈耀武

引用本文:

赵冬冬,刘雪松,周凡,胡映天,陈耀武. 兼顾远场和近场性能的便携式三维声纳设计[J]. 浙江大学学报(工学版), 2019, 53(2): 364-372.

Dong-dong ZHAO,Xue-song LIU,Fan ZHOU,Ying-tian HU,Yao-wu CHEN. Design of portable three-dimensional sonar for both far-field and near-field. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 364-372.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.02.020        http://www.zjujournals.com/eng/CN/Y2019/V53/I2/364

图 1  MFT算法发射过程示意图
图 2  多聚焦区间示意图
图 3  十字型阵列的方位角定义
图 4  O-CZT波束形成流程
图 5  3种波束形成算法的实数计算量对比
P 计算量
DM PS O-CZT
50 8.3×105 7.2×105 6.6×105
100 2.3×106 1.6×106 1.3×106
150 4.5×106 2.5×106 1.9×106
表 1  3种波束形成算法的实数计算量对比
图 8  方框成像效果对比图
图 9  铁链的实物图像
图 10  铁链的三维图像
图 11  铁框的实物图像
图 12  立方体铁框的三维图像
图 6  近场不同频率和算法的水平波束图对比
图 7  不同距离处的点目标成像效果对比图
1 MURINO V, TRUCCO A Three-dimensional image generation and processing in underwater acoustic vision[J]. Proceedings of the IEEE, 2000, 88 (12): 1903- 1948
doi: 10.1109/5.899059
2 PALOMERAS N, HURTOS N, CARRERAS M, et al Autonomous mapping of underwater 3D structures: from view planning to execution[J]. IEEE Robotics and Automation Letters, 2018, 3 (3): 1965- 1971
doi: 10.1109/LRA.2018.2808364
3 PARSONS M J G, PARNUM I M, MCCAULEY R D Visualizing samsonfish (seriola hippos) with a reson 7125 seabat multibeam sonar[J]. ICES Journal of Marine Science, 2013, 70 (3): 665- 674
doi: 10.1093/icesjms/fst009
4 DAVISA, LUGSDIN A. High speed underwater inspection for port and harbour security using Coda Echoscope 3D sonar [C] // Proceedings of OCEANS 2005 MTS/IEEE. Washington DC: IEEE, 2005: 2006–2011.
5 TRUCCO A, MARTELLI S, CROCCO M Low-cost acoustic cameras for underwater wideband passive imaging[J]. IEEE Journal of Oceanic Engineering, 2015, 40 (4): 929- 937
doi: 10.1109/JOE.2014.2377454
6 ROUX E, RAMALLIi A, LIEBGOTT H, et al Wideband 2-D array design optimization with fabrication constraints for 3-D US imaging[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2017, 64 (1): 108- 125
doi: 10.1109/TUFFC.2016.2614776
7 HAUPT R L Thinned arrays using genetic algorithms[J]. IEEE Transactions on Antennas and Propagation, 1994, 42 (7): 993- 999
doi: 10.1109/8.299602
8 HA B V, MUSSETTA M, PIRINOLI P, et al Modified compact genetic algorithm for thinned array synthesis[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 15: 1105- 1108
doi: 10.1109/LAWP.2015.2494839
9 MASSA A, ROCCA P, OLIVERI G Compressive sensing in electromagnetics-areview[J]. IEEE Antennas and Propagation Magazine, 2015, 57 (1): 224- 238
doi: 10.1109/MAP.2015.2397092
10 PINCHERA D, MIGLIORE M D, SCHETTINO F, et al An effective compressed-sensing inspired deterministic algorithm for sparse array synthesis[J]. IEEE Transactions on Antennas and Propagation, 2018, 66 (1): 149- 159
doi: 10.1109/TAP.2017.2767621
11 PALMESE M, TRUCCO A Three-dimensional acoustic imaging by chirp zeta transform digital beamforming[J]. IEEE Transactions on Instrumentation and Measurement, 2009, 58 (7): 2080- 2086
doi: 10.1109/TIM.2009.2015523
12 HAN Y, TIAN X, ZHOU F, et al A real-time 3-D underwater acoustical imaging system[J]. IEEE Journal of Oceanic Engineering, 2014, 39 (4): 620- 629
doi: 10.1109/JOE.2013.2285952
13 EHRHARDT M, DEGEL C, BECKER F J, et al. Comparison of different short-range sonar systems on real structures and objects [C] // OCEANS 2017. Aberdeen: IEEE, 2017: 1–6.
14 LIU X, ZHOU F, ZHOU H, et al A low-complexity real-time 3-D sonar imaging system with a cross array[J]. IEEE Journal of Oceanic Engineering, 2016, 41 (2): 262- 273
doi: 10.1109/JOE.2015.2439851
15 MURINO V, TRUCCO A, TACCONI G. Space-varying automatic focalization for the focused beamforming process [C] // 2nd European Conference on Underwater acoustics. Copenhagen: European Commission, 1994: 697–702.
16 TRUCCO A A least squares approximation for the delays used in focused beamforming[J]. Journal of the Acoustical Society of America, 1998, 104 (1): 171- 175
doi: 10.1121/1.423286
[1] 韩林峰,王平义,王梅力,刘云. 碎裂岩体滑坡运动特征及近场涌浪变化规律[J]. 浙江大学学报(工学版), 2019, 53(12): 2325-2334.
[2] 秦洪远, 刘一鸣, 黄丹. 脆性多裂纹扩展问题的近场动力学建模分析[J]. 浙江大学学报(工学版), 2018, 52(3): 497-503.
[3] 郁杨天, 章青, 顾鑫. 近场动力学与有限单元法的混合模型与隐式求解格式[J]. 浙江大学学报(工学版), 2017, 51(7): 1324-1330.
[4] 刘肃肃,余音. 复材非线性及渐进损伤的态型近场动力学模拟[J]. 浙江大学学报(工学版), 2016, 50(5): 993-1000.
[5] 殷平,王彤,谢旭. 考虑桥墩轴力变化影响的刚构桥近场地震反应[J]. J4, 2013, 47(11): 1896-1903.
[6] 黄华高,陈玮,陈恒林,钱照明. Boost变流器传导电磁干扰的近场耦合模型[J]. J4, 2011, 45(11): 2031-2037.
[7] 李冰茹, 王宣银, 葛辉良. 圆柱壳体近场辐射噪声预报与实验研究[J]. J4, 2010, 44(3): 563-568.
[8] 陈国兴, 左熹, 王志华, 杜修力, 孙田. 地铁车站结构近远场地震反应特性振动台试验[J]. J4, 2010, 44(10): 1955-1961.
[9] 徐亮, 陈心昭, 毕传兴, 等. 近场声全息分辨率增强的正交球面波插值方法[J]. J4, 2009, 43(10): 1808-1811.
[10] 郭福源 林斌 陈钰清 曹向群. 光纤端面衍射场光束的特征参数[J]. J4, 2004, 38(3): 281-285.