Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (2): 268-274    DOI: 10.3785/j.issn.1008-973X.2019.02.009
机械工程     
不同采样密度下体压分布特征
赵川1(),余隋怀1,*(),王磊2,李文华1
1. 西北工业大学 陕西省工业设计工程实验室,陕西 西安,710068
2. 中航工业第一飞机设计研究院,陕西 西安,710089
Body pressure distribution characteristics in different sampling densities
Chuan ZHAO1(),Sui-huai YU1,*(),Lei WANG2,Wen-hua LI1
1. Shaanxi Engineering Laboratory for Industrial Design, Northwestern Polytechnical University, Xi'an 710072, China
2. China Aviation Industry First Aircraft Design Institute, Xi'an 710089, China
 全文: PDF(794 KB)   HTML
摘要:

对压力座垫原始数据(采样密度为32×32)进行空域滤波处理剔除噪声,增强独立传感器之间数据分布的连续性. 将体压分布采样密度降至24×24、16×16、8×8,提取不同采样密度下的平均压力、峰值压力、平均压力梯度和峰值压力梯度进行分析. 单因素方差分析结果表明,32×32采样密度与24×24、16×16采样密度下的特征均值之间的差异较小(1.1、2.6 mmHg),与8×8采样密度下的特征均值之间的差异较大(9.0 mmHg). 斯皮尔曼相关性分析结果表明,32×32与24×24、16×16、8×8采样密度下的平均压力、峰值压力、平均压力梯度和峰值压力梯度具有较高的相关性(P<0.05). 其中相关性最高的为与24×24采样密度下的峰值压力(0.99,P<0.05),相关性最低的为与8×8采样密度下的平均压力梯度(0.55,P<0.05). 试验结果表明采样密度为24×24和16×16的压力座垫可以提供精确的体压分布特征.

关键词: 压力座垫乘坐舒适性体压分布飞机座椅数据简化    
Abstract:

The raw data with sampling density of 32×32 was spatially filtered to eliminate noise, in order to enhance the continuity of data distribution between independent sensors. Then sampling density of data was decreased to 24×24, 16×16, and 8×8, respectively. Four common features (mean pressure, maximum pressure, mean pressure gradient, and maximum pressure gradient) were calculated at each sampling density. The one-way ANOVA analysis showed that the differences of mean values between 32×32 sampling density and 24×24 as well as 16×16 sampling densities were small (1.1 mmHg, 2.6 mmHg), but the difference of mean value between 32×32 and 8×8 sampling densities was big (9.0 mmHg). Spearman correlation analysis revealed that the four common features of 32×32 sampling density had high correlation with that of 24×24, 16×16, and 8×8 sampling densities (P<0.05). The highest was the peak pressure correlation (0.99,P<0.05) between the 32 ×32 and 24 ×24 sampling densities, and the lowest was the mean pressure gradient correlation (0.55,P<0.05) between the 32×32 and 8×8 sampling densities. The test results showed that the pressure mat with the sampling density of 24×24 and 16×16 can provide accurate body pressure distribution characteristics.

Key words: pressure mapping mat    riding comfort    body pressure distribution    plane seat    data reduction
收稿日期: 2018-01-24 出版日期: 2019-02-21
CLC:  TB 18  
通讯作者: 余隋怀     E-mail: zhaochuancow@gmail.com;ysuihuai@vip.sina.com
作者简介: 赵川(1988—),男,博士生,从事工业设计及人机工效研究. orcid.org/0000-0002-7279-6672. E-mail: zhaochuancow@gmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
赵川
余隋怀
王磊
李文华

引用本文:

赵川,余隋怀,王磊,李文华. 不同采样密度下体压分布特征[J]. 浙江大学学报(工学版), 2019, 53(2): 268-274.

Chuan ZHAO,Sui-huai YU,Lei WANG,Wen-hua LI. Body pressure distribution characteristics in different sampling densities. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 268-274.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.02.009        http://www.zjujournals.com/eng/CN/Y2019/V53/I2/268

性别 男(N=5) 女(N=5)
身高/
cm
体重/
kg
体质指数/
BMI
身高/
cm
体重/
kg
体质指数/
BMI
平均值 176.2 77.5 24.8 163.8 55.0 21.0
最小值 167.0 72.5 21.2 155.0 47.0 18.4
最大值 185.0 99.0 28.9 169.0 65.0 24.5
标准差 7.34 13.10 2.90 4.91 5.90 2.10
表 1  被试者人体尺寸数据
图 1  客舱模拟平台及试验过程
图 2  压力座垫传感器分布图
图 3  压力座垫数据的空域滤波处理结果
图 4  体压分布数据的压力映射图像
座椅间距/cm 32×32 24×24
pmax/
mmHg
pmean/
mmHg
Gmax/
(mmHg·m?1)
Gmean/
(mmHg·m?1)
pmax/
mmHg
pmean/
mmHg
Gmax/
(mmHg·m?1)
Gmean/
(mmHg·m?1)
71.12 32.13 25.72 10.11 8.21 31.93 27.65 12.47 9.99
76.20 32.23 27.65 10.38 7.48 32.46 25.63 12.48 9.15
81.28 35.62 28.47 10.54 8.21 35.97 28.14 14.20 9.87
86.36 36.26 28.41 11.69 8.34 36.16 28.40 14.23 10.13
91.44 37.33 29.87 12.36 8.48 37.68 28.89 15.00 10.29
座椅间距/cm 16×16 8×8
pmax/
mmHg
pmean/
mmHg
Gmax/
(mmHg·m?1)
Gmean/
(mmHg·m?1)
pmax/
mmHg
pmean/
mmHg
Gmax/
(mmHg·m?1)
Gmean/
(mmHg·m?1)
71.12 32.72 28.39 15.98 12.70 34.78 29.67 24.41 19.60
76.20 34.12 26.24 16.51 11.94 38.02 27.07 26.44 18.79
81.28 38.48 28.96 19.35 12.81 40.85 30.57 28.95 20.31
86.36 39.09 29.41 19.20 13.17 41.12 30.65 29.21 21.56
91.44 39.16 30.13 20.08 13.46 43.76 31.99 29.67 21.57
表 2  压力分布参数
对照组
采样密度
试验组
采样密度
pmean均值差 P 95%置信区间
下限 上限
注:1) 与对照组比较,P<0.05
32×32 8×8 ?9.01) 0.03 ?17.18 ?0.78
32×32 16×16 ?2.6 0.66 ?11.78 4.63
32×32 24×24 ?1.1 0.99 ?9.26 7.14
表 3  不同采样密度下平均压力单因素方差分析结果
32×32体压分布采样密度
对应特征值
24×24 16×16 8×8
pmax pmean Gmax Gmean pmax pmean Gmax Gmean pmax pmean Gmax Gmean
注:与对照组比较,均有P<0.05
pmax 0.99 0.88 0.76 0.84 0.94 0.88 0.70 0.81 0.85 0.88 0.78 0.76
pmean 0.85 0.99 0.55 0.94 0.76 0.98 0.48 0.89 0.61 0.96 0.60 0.86
Gmax 0.78 0.55 0.99 0.59 0.78 0.56 0.94 0.58 0.74 0.56 0.88 0.55
Gmean 0.84 0.96 0.61 0.99 0.76 0.94 0.57 0.96 0.63 0.92 0.68 0.92
表 4  压力分布的斯皮尔曼相关性分析结果
1 张毅, 王和平 民用客机总体方案评价准则研究[J]. 西北工业大学学报, 2006, 24 (6): 791- 794
ZHANG Yi, WANG He-ping Some suggesion evalution preliminary overall design of chinese passenger aircraft[J]. Journal of Northwestern Polytechnical University, 2006, 24 (6): 791- 794
doi: 10.3969/j.issn.1000-2758.2006.06.026
2 CILOGLU H, ALZIADEH M, MOHANY A, et al Assessment of the whole body vibration exposure and the dynamic seat comfort in passenger aircraft[J]. International Journal of Industrial Ergonomics, 2015, 45 (7): 116- 123
3 RICHARDS L G, JACOBSON I D, KUHLTHAU A R What the passenger contributes to passenger comfort[J]. Applied Ergonomics, 1978, 9 (3): 137- 142
doi: 10.1016/0003-6870(78)90003-0
4 VINK P. Aircraft interior comfort and design [M]. Boca Raton: CRC Press, 2011.
5 铃木浩明, 管永利 列车舒适度的评价[J]. 国外铁道车辆, 1999, (2): 26- 32
LINGMU hao-ming, GUAN Yong-li The evaluation of trian comfort[J]. Foreign Rolling Stock, 1999, (2): 26- 32
6 马佳, 柯艺杰, 苏强, 等 汽车座椅舒适度人工智能评价方法研究[J]. 机械科学与技术, 2011, 30 (3): 419- 422
MA Jia, KE Yi-jie, SU qiang, et al An automobile seat comfort evalution method based on artificial intelligence[J]. Mechanical Science and Technology for Aerospace Engineering, 2011, 30 (3): 419- 422
7 LAI Y H, SUE M W, GUO L Y A novel evaluation platform for the evaluation of anti-ulcers mattress[J]. Gerontechnology, 2014, 13 (2): 232
8 ANDRADE Y N. An ergonomic evaluation of aircraft pilot seats [D]. Daytona Beach: Embry Riddle Aeronautical University, 2013.
9 CIACCIA F R D A S, SZNELWAR L I An approach to aircraft seat comfort using interface pressure mapping[J]. Work, 2012, 41 (Suppl. 1): 240- 245
10 LI W, YU S, YANG H, et al Effects of long-duration sitting with limited space on discomfort, body flexibility, and surface pressure[J]. International Journal of Industrial Ergonomics, 2017, 58: 12- 24
doi: 10.1016/j.ergon.2017.01.002
11 STINSON M D, PORTER-ARMSTRONG A, EAKIN P Seat-interface pressure: a pilot study of the relationship to gender, body mass index, and seating position[J]. Archives of Physical Medicine and Rehabilitation, 2003, 84 (3): 405- 409
doi: 10.1053/apmr.2003.50011
12 VOS G A, CONGLETON J J, MOORE J S, et al Postural versus chair design impacts upon interface pressure[J]. Applied Ergonomics, 2006, 37 (5): 619- 628
doi: 10.1016/j.apergo.2005.09.002
13 KOLICH M, SEAL N, TABOUN S Automobile seat comfort prediction: statistical model vs artificial neural network[J]. Applied Ergonomics, 2004, 35 (3): 275- 284
doi: 10.1016/j.apergo.2004.01.007
14 ZHAO C, YU S, MILLER C, et al. Predicting aircraft seat comfort using an artificial neural network [J/OL]. Human Factors and Ergonomics in Manufacturing and Service Industries. https://onlinelibrary.wiley.com/doi/full/10.1002/hfm.20767.
15 TIMM M, SAMUELSSON K Wheelchair seating: a study on the healthy elderly[J]. Scandinavian Journal of Occupational Therapy, 2016, 23 (6): 458- 466
doi: 10.3109/11038128.2016.1152297
16 VERBUNT M, BARTNECK C Sensing senses: tactile feedback for the prevention of decubitus ulcers[J]. Applied Psychophysiology and Biofeedback, 2010, 35 (3): 243- 250
doi: 10.1007/s10484-009-9124-z
17 WININGER M, CRANE B A Assessment of the minimally sufficient spatial sampling in pressure mapping the wheelchair seating interface[J]. Technology and Disability, 2015, 27 (4): 119- 125
18 HEFFERNAN C, FREIVALDS A Optimum pinch grips in the handling of dies[J]. Applied Ergonomics, 2000, 31 (4): 409- 414
doi: 10.1016/S0003-6870(99)00064-2
19 KREMSER F, GUENZKOFER F, SEDLMEIER C, et al Aircraft seating comfort: the influence of seat pitch on passengers’ well-being[J]. Work, 2012, 41 (Suppl. 1): 4936- 4942
[1] 吴志军, 朱绍鹏, 刘孝龙, 邱斌斌. 电动全地形车动力性及乘坐舒适性分析[J]. J4, 2013, 47(12): 2227-2233.