Please wait a minute...
浙江大学学报(工学版)  2018, Vol. 52 Issue (8): 1624-1630    DOI: 10.3785/j.issn.1008-973X.2018.08.023
材料与环境工程     
酸氧化掺金方法改善碳纳米管的电接触特性
张亚东1, 常春蕊2, 张志明3, 张好强1, 孙红婵1, 安立宝1
1. 华北理工大学 机械工程学院, 河北 唐山 063210;
2. 华北理工大学 理学院, 河北 唐山 063210;
3. 华北理工大学 材料工程学院, 河北 唐山 063210
Improvement on electrical contact characteristics of Au-doped carbon nanotubes by acid oxidation
ZHANG Ya-dong1, CHANG Chun-rui2, ZHANG Zhi-ming3, ZHANG Hao-qiang1, SUN Hong-chan1, AN Li-bao1
1. College of Mechanical Engineering, North China University of Science and Technology, Tangshan 063210, China;
2. College of Science, North China University of Science and Technology, Tangshan 063210, China;
3. College of Materials Engineering, North China University of Science and Technology, Tangshan 063210, China
 全文: PDF(917 KB)   HTML
摘要:

采用硝酸回流方式在碳纳米管表面构造缺陷及含氧官能团,处理后的碳纳米管在氯金酸溶液中超声震荡,经过氢气热还原将氧化态的金还原为0价态的金.扫描电子显微图片及红外吸收光谱表明酸处理成功地在碳纳米管管壁及端部构造了缺陷及羟基、羧基等含氧亲水官能团.形貌表征表明在碳纳米管管壁尤其是端部成功地掺杂了纳米粒子,并且X射线光电子谱表明该纳米粒子是0价态的金.掺杂后碳纳米管的拉曼光谱中G带波数增大说明对碳纳米管掺杂金为P型掺杂.采用介电电泳法分别将碳纳米管原样与掺金碳纳米管样品组装到金电极之间,掺杂使碳纳米管与金电极之间的接触电阻得到明显的降低,电阻值平均降幅高达69.20%.

Abstract:

Defects and some oxygen-containing functional groups were obtained on the surface of carbon nanotubes by means of reflux treatment of 40% nitric acid, and then the treated nanotubes adsorbed the molecules or the corresponding ions by means of ultrasonic vibration in the auric chloride acid solution. The gold in the oxidation state was converted to the 0 valence state through hydrogen thermal reduction. Both of scanning electron microscopy images and infrared absorption spectroscopy show that the defects, some hydroxyl groups, carboxyl and other oxygen-containing functional groups are formed on the walls of the tubes by the acid treatment. Morphological characterization images show nanoparticles are successfully doped on the nanotubes' walls and ends. X-ray photoelectron spectroscopy shows that the nanoparticle is composed of 0 valence gold. After doping, the G-band wavenumber increases in Raman spectra, which indicates the doping method is P-type, and electrons transfer from adjacent carbon atoms to dopants, increasing the hole concentration in carbon nanotubes and thereby lowering the contact resistance. Both intrinsic carbon nanotubes and treated ones are assembled onto the gold electrodes by dielectrophoresis. Results show that the contact resistance has been considerably improved after doping, with the average resistance decrease up to 69.20%.

收稿日期: 2017-06-18 出版日期: 2018-08-23
CLC:  TN305  
基金资助:

国家自然科学基金资助项目(51472074,51172062);河北省引进海外高层次人才“百人计划”资助项目(E2012100005)

通讯作者: 安立宝,男,教授.orcid.org/0000-0002-8332-8655.     E-mail: lan@ncst.edu.cn
作者简介: 张亚东(1992-),男,硕士生,从事碳纳米管接触电阻的研究.orcid.org/0000-0002-4116-1463.E-mail:18332629883@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

张亚东, 常春蕊, 张志明, 张好强, 孙红婵, 安立宝. 酸氧化掺金方法改善碳纳米管的电接触特性[J]. 浙江大学学报(工学版), 2018, 52(8): 1624-1630.

ZHANG Ya-dong, CHANG Chun-rui, ZHANG Zhi-ming, ZHANG Hao-qiang, SUN Hong-chan, AN Li-bao. Improvement on electrical contact characteristics of Au-doped carbon nanotubes by acid oxidation. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(8): 1624-1630.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.08.023        http://www.zjujournals.com/eng/CN/Y2018/V52/I8/1624

[1] ⅡJIMA S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354(6348):56-58.
[2] 周二振, 应济. 碳纳米管阵列/环氧树脂的导热导电性能[J]. 浙江大学学报:工学版, 2016, 50(9):1671-1676 ZHOU Er-zhen, YING Ji. Thermal conductivity of carbon nanotube array/poxy resin[J]. Journal of Zhejiang University:Engineering Science, 2016, 50(9):1671-1676
[3] 刁加加, 安立宝, 常春蕊. 碳纳米管在典型微纳电子器件中的应用进展[J]. 液晶与显示, 2016, 32(2):149-156 DIAO Jia-jia, AN Li-bao, CHANG Chun-rui. Typical fine electronic instruments medium evolution progress[J]. Chinese Journal of Liquid Crystals and Displays, 2016, 32(2):149-156
[4] AN L B, FRIEDRICH C. Dielectrophoretic assembly of carbon nanotubes and stability analysis[J]. Progress in Natural Science:Materials International, 2013, 23(4): 367-373.
[5] LEE S E, SANG S J, PARK H, et al. Large reduction in electrical contact resistance of flexible carbon nanotube/silicone rubber composites by trifluoroacetic acid treatment[J]. Composites Science and Technology, 2017, 143:98-105.
[6] HUSSEIN L A, MAGDY N, YAMANI H Z. Stable glycopyrronium bromide solid contact ion selective potentiometric sensors using multi-walled carbon nanotubes, polyaniline nanoparticles and polyaniline microparticles as ion-to-electron transducers:a compar ative study[J]. Sensors and Actuators B Chemical, 2017, 247:436-444.
[7] LEE S H, KIM D Y, NOH Y Y. Improved ambipolar charge injection in organic field-effect transistors with low cost metal electrode using polymer sorted semiconducting carbon nanotubes[J]. Organic Electr onics, 2017, 46:28-34.
[8] 安立宝, 李文, 陈佳. 高温退火降低碳纳米管接触电阻的实验研究[J]. 北京工业大学学报, 2017, 43(2):294-298 AN Li-bao, LI Wen, CHEN Jia. Experimental resistance of reducing the contact resistance of carbon nanotubes by high temperature annealing[J]. Journal of Beijing University of Technology, 2017, 43(2):294-298
[9] LIU X, WU Y, SU Y, et al. Enhanced electron field emission characteristics of single-walled carbon nanotube films by ultrasonic bonding[J]. Physica E:Low-dimensional Systems and Nanostructures, 2014, 63(9):165-168.
[10] BIN L I, FENG Y, DING K W, et al. Effect of electron beam irradiation on multi-walled carbon nanotubes[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(3):764-769.
[11] CHEGEL R. Tuning electronic properties of carbon nanotubes by boron and nitrogen doping[J]. Physica B Condensed Matter, 2016, 499(1):1-16.
[12] KUNDU A, KOLEY K, DUTTA A, et al. Impact of gate metal work-function engineering for enhancement of subthreshold analog/RF performance of underlap dual material gate DG-FET[J]. Microelectronics Reliability, 2014, 54(12):2717-2722.
[13] CHEN C, ZHANG W, ZHAO B, et al. Investigation of Schottky-Barrier carbon nanotube field-effect transistor by an efficient semi-classical numerical modeling[J]. Physics Letters A, 2009, 374(2):309-312.
[14] KUZUBOV A A, AVRAMOV P V, NIKOLAEVA K M, et al. Study of interaction between transition metal atoms and bigraphene monovacancy by means of quantum chemistry[J]. Computational Materials Science, 2016, 112:269-275.
[15] TIEKINK E R T. Supramolecular assembly of molecular gold (I) compounds:an evaluation of the competition and complementarity between aurophilic (Au..Au) and conven tional hydrogen bonding interactions[J]. Coordination Chemistry Reviews, 2014, 275:130-153.
[16] AN L, CHEAM D D, FRIEDRICH C R. Controlled dielectrophoretic assembly of multiwalled carbon nanotubes[J]. Journal of Physical Chemistry C, 2009, 113(1):37-39.
[17] AN L, FRIEDRICH C R. Process parameters and their relations for the dielectrophoretic assembly of carbon nanotubes[J]. Journal of Applied Physics, 2009, 105(7):074314.
[18] 韩典荣, 王璐, 罗成林,等. (n,n)-(2n,0)碳纳米管异质结的扭转力学特性[J]. 物理学报, 2015, 64(10):171-176 HAN Dian-rong, WANG Lu, LUO Cheng-Lin, et al. Torsional mechanical properties of (n,n) - (2n,0) carbon nanotubes heterojunctions[J]. Acta Physica Sinica, 2015, 64(10):171-176
[19] SAITO T, MATSUSHIGE K, TANAKA K. Chemical treatment and modification of multi-walled carbon nanotubes[J]. Physica B Condensed Matter, 2002, 323(1-4):280-283.
[20] ICHIDA M, NAGAO K, IKEMOTO Y, et al. E-beam irradiation effects on IR absorption bands in single-walled carbon nanotubes[J]. Solid State Communications, 2017, 250:119-122.
[21] CHEN X. Spectroscopy and spectral analysis[J]. Spectroscopy and Spectral Analysis, 2015, 35:1724-1729.
[22] 吴小利, 岳涛, 陆荣荣,等. 碳纳米管的表面修饰及FTIR, Raman和XPS光谱表征[J]. 光谱学与光谱分析, 2005, 25(10):1595-1598 WU Xiao-li, YUE Tao, LU Rong-rong, et al. Surface modification of carbon nanotubes and FTIR, Raman and XPS spectroscopy[J]. Spectroscopy and Spectral Analysis, 2005, 25(10):1595-1598
[23] LANDOIS P, PINAULT M, HUARD M, et al. Structure in nascent carbon nanotubes revealed by spatially resolved Raman spectroscopy[J]. Thin Solid Films, 2014, 568(1):102-110.
[24] RAO A M, EKLUND P C, BANDOW S, et al. Evidence for charge transfer in doped carbon nanotube bundles from raman scattering[J]. Nature, 1997, 388(6639):257-259.
[25] LIM S C, JIN H J, DONG J B, et al. Contact resistance between metal and carbon nanotube interconnects:effect of work function and wettability[J]. Applied Physics Letters, 2009, 95(26):264103.

[1] 王国雄 严晓浪 史峥 陈志锦. 基于模型的光学校正系统的设计与实现[J]. J4, 2004, 38(5): 521-524.