Please wait a minute...
浙江大学学报(工学版)  2018, Vol. 52 Issue (3): 420-430    DOI: 10.3785/j.issn.1008-973X.2018.03.002
土木与交通工程     
考虑隧道剪切效应的隧道下穿对既有盾构隧道的纵向影响
梁荣柱1,2, 宗梦繁1, 康成1, 吴文兵1, 方宇翔1, 夏唐代2, 程康2
1. 中国地质大学(武汉) 工程学院, 湖北 武汉 410074;
2. 浙江大学 建筑工程学院, 浙江 杭州 310058
Longitudinal impacts of existing shield tunnel due to down-crossing tunnelling considering shield tunnel shearing effect
LIANG Rong-zhu1,2, ZONG Meng-fan1, KANG Cheng1, WU Wen-bing1, FANG Yu-xiang1, XIA Tang-dai2, CHENG Kang2
1. Engineering Faculty, China University of Geosciences(Wuhan), Wuhan 430074, China;
2. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
 全文: PDF(1976 KB)   HTML
摘要:

将既有隧道简化为能考虑隧道剪切效应的Timoshenko梁,提出在隧道开挖作用下既有隧道纵向响应的解析解答.通过两阶段分析法,分析隧道开挖过程中既有隧道的变形及内力响应.基于修正的Loganathan和Polous地层位移理论,预测新旧隧道成任意夹角情况下隧道开挖引起的自由土体沉降分布;把隧道开挖引起的自由土体沉降施加于既有隧道之上,并基于Timoshenko梁理论,建立考虑隧道剪切效应的既有隧道纵向变形微分平衡方程;通过有限差分法求得在自由土体沉降作用下既有隧道纵向变形及内力数值解答.收集2个已发表工程实测数据,并与所提方法和Euler-Bernoulli法得到的计算结果进行对比.通过对比分析发现,实测结果与两者计算结果有良好的一致性;相对于所提方法,基于Euler-Bernoulli梁的计算结果明显高估了隧道的弯矩、剪力及接头张开量;所提方法能有效模拟既有隧道剪切效应,因而可进一步得到隧道开挖作用下的既有隧道错台量.研究成果可为合理预测隧道开挖对既有隧道影响提供一定的理论支持.

Abstract:

An analytical method considering the shearing effect of tunnel was proposed to assess the tunnel longitudinal responses induced by tunnelling. The existing shield tunnel was modeled by Timoshenko beam, which considers the tunnel shearing effect. Two-stage analysis method was applied to analyze the tunnelling-induced existing shield tunnel deformation and internal force responses. First, the tunnelling-induced free ground settlement was predicted by using the modified Loganathan and Polous's theory when there was an oblique angle between the new and old tunnels. Second, the induced free ground settlement was imposed on the existing tunnel; the equilibrium differential equations for tunnel responses considering the shield tunnel shearing effect were then established based on the Timoshenko beam theory. Eventually, the equilibrium differential equation for longitudinal displacement was solved numerically by using the finite difference method (FDM). The effectiveness of the proposed method was verified by two well-documented published case histories. General good agreement is observed between the measured data and the results obtained from the proposed and the Euler-Bernoulli beam methods. Compared with the proposed method, the theory based on the Euler-Bernoulli beam remarkably overestimates the bending moments, shear forces and joint openings of existing shield tunnel. The dislocations between the adjacent segmental linings of tunnel can be further obtained by the proposed method due to its inherent advantage of modeling the shear effect of shield tunnel. In general, the proposed method may provide a certain theoretic basis to estimate the tunnel longitudinal responses induced by beneath tunnelling.

收稿日期: 2016-10-21 出版日期: 2018-09-11
CLC:  U45  
基金资助:

国家自然科学基金资助项目(51678547);中央高校基本科研业务费专项资金资助项目(CUG170647).

通讯作者: 吴文兵,男,副教授,博士.orcid.org/0000-0001-5473-1560.     E-mail: zjuwwb1126@163.com
作者简介: 梁荣柱(1988-),男,副研究员,博士,从事盾构隧道保护相关研究.orcid.org/0000-0002-2165-2062.E-mail:liangcug@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

梁荣柱, 宗梦繁, 康成, 吴文兵, 方宇翔, 夏唐代, 程康. 考虑隧道剪切效应的隧道下穿对既有盾构隧道的纵向影响[J]. 浙江大学学报(工学版), 2018, 52(3): 420-430.

LIANG Rong-zhu, ZONG Meng-fan, KANG Cheng, WU Wen-bing, FANG Yu-xiang, XIA Tang-dai, CHENG Kang. Longitudinal impacts of existing shield tunnel due to down-crossing tunnelling considering shield tunnel shearing effect. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(3): 420-430.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.03.002        http://www.zjujournals.com/eng/CN/Y2018/V52/I3/420

[1] CLAYTON C, BERG J, THOMAS A. Monitoring and displacements at Heathrow Express Terminal 4 station tunnels[J]. Géotechnique, 2006, 56(5):323-334.
[2] COOPER M L, CHAPMAN D N,ROGERS C D F, et al. Movements in the piccadilly line tunnels due to the heathrow express construction[J]. Géotechnique, 2002, 52(4):243-258.
[3] MOHAMAD H, BENNETT P J, SOGA K,et al. Behaviour of an old masonry tunnel due to tunneling-induced ground settlement[J]. Géotechnique, 2010, 60(12):927-938.
[4] NG C W W, BOONYARAK T, MAŠÍN D. Three-dimensional centrifuge and numerical modeling of the interaction between perpendicularly crossing tunnels[J]. Canadian Geotechnical Journal, 2013, 50(9):935-946.
[5] NG C W W, BOONYARAK T, MAŠÍN D. Effects of pillar depth and shielding on the interaction of crossing multitunnels[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015, ASCE, 141(6):04015021.
[6] LIU H Y, SMALL J C, CARTER J P, et al. Effects of tunnelling on existing support systems of perpendicularly crossing tunnels[J]. Computers and Geotechnics, 2009, 36(5):880-894.
[7] KLAR A, VORSTER T, SOGA, K, et al. Soil-pipe interaction due to tunnelling:comparsion between Winkler and elastic continuum solutions[J]. Géotechnique, 55(6):461-466.
[8] 张治国, 黄茂松, 王卫东. 邻近开挖对既有软土隧道的影响[J]. 岩土力学,2009, 30(5):1373-1380. ZHANG Zhi-guo, HUANG Mao-song, WANG Wei-dong. Responses of existing tunnels induced by adjacent excavation in soft soils[J]. Rock and Soil Mechanics, 2009, 30(5):1373-1380.
[9] 张治国, 黄茂松, 王卫东. 层状地基中隧道开挖对临近既有隧道的影响分析[J]. 岩土工程学报, 2009, 31(4):600-608. ZHANG Zhi-guo, HUANG Mao-song, WANG Wei-dong. Analysis on response of existing tunnels due to adjacent tunneling in multi-layered soils[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(4):600-608.
[10] ZHANG Z, HUANG M. Geotechnical influence on existing subway tunnels induced by multiline tunneling in Shanghai soft soil[J]. Computers and Geotechnics, 2014, 56(56):121-132.
[11] LIANG R, XIA T, YI H,et al. Effects of above-crossing tunnelling on the existing shield tunnels[J]. Tunnelling and Underground Space Technology, 2016, 58(8):159-176.
[12] SAGASETA C.Analysis of undraind soil deformation due to ground loss[J]. Géotechnique, 1987, 37(3):301-320.
[13] WU H, SHEN S, LIAO S, et al. Longitudinal structural modelling of shield tunnels considering shearing dislocation between segmental rings[J]. Tunnelling and Underground Space Technology, 2015, 50(8):317-323.
[14] SHEN S L, WU H N, CUI Y J, et al. Long-term settlement behaviour of metro tunnels in the soft deposits of Shanghai[J]. Tunnelling and Underground Space Technology, 2014, 40(2):309-323.
[15] LIANG R, XIA T, HUANG M, LIN C. Simplified analytical method for evaluating the effects of adjacent excavation on shield tunnel considering the shearing effect[J]. Computers and Geotechnics, 2017, 81(1):167-187.
[16] LI P, DU S, SHEN S, et al. Timoshenko beam solution for the response of existing tunnels because of tunnelling underneath[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2016, 40(5):766-784.
[17] TIMOSHENKO S P. On the correction for shear of the differential equation for transverse vibration of prismatic bars[J]. Philosophical Magazine, 1921, 41(2):744-746.
[18] ZHANG Z, HUANG M, WANG W. Evaluation of deformation response for adjacent tunnels due to soil unloading in excavation engineering[J]. Tunnelling and Underground Space Technology, 2013, 38(9):244-253.
[19] ZHANG Z, ZHANG M, ZHAO Q. A simplified analysis for deformation behavior of buried pipelines considering disturbance effects of underground excavation in soft clays[J]. Arabian Journal of Geosciences, 2015, 8(10):1-15.
[20] LOGANATHAN N, POULOS H. Analytical predicted for tunnelling-induced ground movements in clays[J]. Journal of Geotechnical and Geo environmental Engineering, 1999, 124(9):846-856.
[21] LEE K, ROWE R, LO K. Subsidence owing to tunnelling. I. Estimating the gap parameter[J]. Canadian Geotechnical Journal, 1992, 29(6):929-940.
[22] 梁荣柱,夏唐代,林存刚,等. 盾构推进引起地表及深层水平位移分析[J],岩土力学与工程学报, 2015, 34(3):583-593. LIANG Rong-zhu,XIA Tang-dai,LIN Cun-gang, et al,Analysis of ground surface displacement and horizontal movement of deep soils induced by shield advancing[J].Chinese Journal of Rock Mechanics and Engineering,2015, 34(3):583-593.
[23] SHIBA Y, KAWASHIMA K, OBINATA N, et al. Evaluation procedure for seismic stress developed in shield tunnels based on seismic deformation method[J]. Doboku Gakkai Ronbunshu, 1989, 1989(404):385-394.
[24] VESIC A. Bending of beams resting on isotropic elastic solid[J]. Journal of Soil Mechanics and Foundation Engineering, ASCE, 1961, 87(2):35-53.
[25] ATTEWELL P, YEATES J. SELBY A. Soil movements induced by tunnelling and their effects on pipelines and structures[M]. London:Blackie and Son Ltd, 1986:128-132.
[26] VORSTER T, KLAR A, SOGA K, et al. Estimating the effects of tunneling on existing pipelines[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(11):1399-1410.
[27] 杨敏,赵锡宏. 分层土中的单桩分析[J]. 同济大学学报,1992,20(4):421-428. YANG Min,ZHAO Xi-hong. An approach for a single pile in layered soil[J]. Journal of Tongji University:Natural Science,1992,20(4):421-428.
[28] SCHIMIDT C. Author's reply to Schmidt[J]. Géotechnique, 1988, 38(4):647-649.
[29] 王岩. 某盾构隧道下穿既有盾构隧道变形超限原因解析及控制研究[D]. 北京:北京交通大学,2015:14-34. WANG Yan. Case analysis and control research on ultra-limit of deformation of the existing tunnel undercrossed by shield tunnel[D]. Beijing:Beijing Jiaotong University, 2015:14-34.
[30] 魏纲. 盾构隧道施工引起的土体损失率取值及分布研究[J]. 岩土工程学报,2010,32(9):1354-1361. WEI Gang. Selection and distribution of ground loss ratio induced by shield tunnel construction[J]. Chinese Journal of Geotechnical Engineering,2010,32(9):1354-1361.

[1] 吴昌胜, 朱志铎. 不同隧道施工方法引起地层损失率的统计分析[J]. 浙江大学学报(工学版), 2019, 53(1): 19-30.
[2] 丁智, 王凡勇, 魏新江. 软土双线盾构施工地表变形实测分析与预测[J]. 浙江大学学报(工学版), 2019, 53(1): 61-68.
[3] 李林毅, 阳军生, 张峥, 麻彦娜, 张聪, 包德勇. 深埋式中心水沟排水隧道渗流场解析研究[J]. 浙江大学学报(工学版), 2018, 52(11): 2050-2057.
[4] 丁智, 张霄, 周联英, 陈自海. 近距离桥桩与地铁隧道相互影响研究及展望[J]. 浙江大学学报(工学版), 2018, 52(10): 1943-1953.
[5] 罗华, 陈祖煜, 龚国芳, 赵宇, 荆留杰, 王超. 基于现场数据的TBM掘进速率研究[J]. 浙江大学学报(工学版), 2018, 52(8): 1566-1574.
[6] 潘以恒, 罗其奇, 周斌, 陈建平. 半无限平面含注浆圈深埋隧道渗流场解析研究[J]. 浙江大学学报(工学版), 2018, 52(6): 1114-1122.
[7] 刘新荣, 刘俊, 黄伦海, 王子娟, 陈红军, 冯艳. 黄土连拱隧道开挖的模型试验与压力拱分析[J]. 浙江大学学报(工学版), 2018, 52(6): 1140-1149.
[8] 林赉贶, 夏毅敏, 贾连辉, 贺飞, 杨妹, 杨凯. 安装参数与掘进参数对滚刀破岩阻力的影响[J]. 浙江大学学报(工学版), 2018, 52(6): 1209-1215.
[9] 张家奇, 李术才, 张霄, 张庆松, 李鹏, 于海洋. 土石分层介质注浆扩散的试验研究[J]. 浙江大学学报(工学版), 2018, 52(5): 914-924.
[10] 张子新, 孙杰, 朱雁飞, 黄昕, 袁玮皓. 深埋排蓄水隧道接缝密封垫防水性能试验研究[J]. 浙江大学学报(工学版), 2018, 52(3): 431-439.
[11] 张欣, 张天航, 黄志义, 张驰, 康诚, 吴珂. 分叉隧道分流局部损失特性及流动特征[J]. 浙江大学学报(工学版), 2018, 52(3): 440-445.
[12] 王超, 龚国芳, 杨华勇, 周建军, 段理文, 张亚坤. NSVR硬岩隧道掘进机刀盘扭矩预测分析[J]. 浙江大学学报(工学版), 2018, 52(3): 479-486.
[13] 夏毅敏, 钱聪, 李正光, 梅勇兵. 隧道掘进机支撑推进系统振动特性[J]. 浙江大学学报(工学版), 2018, 52(2): 233-239.
[14] 杨春山, 魏立新, 莫海鸿, 何则干. 考虑衬砌变形与接头特征的盾构隧道纵向刚度[J]. 浙江大学学报(工学版), 2018, 52(2): 358-366.
[15] 于洋, 徐长节, 朱陈, 徐倩. 爆孕育过程的微震源事件空间分形行为[J]. 浙江大学学报(工学版), 2017, 51(11): 2175-2181.