Please wait a minute...
浙江大学学报(工学版)  2017, Vol. 51 Issue (10): 2039-2045    DOI: 10.3785/j.issn.1008-973X.2017.10.019
土木工程、交通工程     
基于波函数法的样条边界声学域中频响应
夏小均1,2, 徐中明1,2, 张志飞1,2, 贺岩松1,2
1. 重庆大学 机械传动国家重点实验室, 重庆 400030;
2. 重庆大学 汽车工程学院, 重庆 400030
Mid-frequency acoustic response analysis of cavity with spline boundary based on wave-based method
XIA Xiao-jun1,2, XU Zhong-ming1,2, ZHANG Zhi-fei1,2, HE Yan-song1,2
1. State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400030, China;
2. College of Automotive Engineering, Chongqing University, Chongqing 400030, China
 全文: PDF(3873 KB)   HTML
摘要:

基于波函数法(WBM)和B样条理论,提出将波函数法引入到含有B样条曲线边界的声腔中进行声学预测的方法,以2种数值积分方法实现.通过改变样条曲线的控制参数,得到2个不同的分析声学域,分别运用波函数法和不同单元尺度的有限元法对该声学域进行计算.对比2种方法下声学域的声压分布、参考点的频率响应以及2种方法的收敛情况.结果表明:采用该方法能够有效地将波函数法应用于含样条边界的声学域中,更加便捷地实现变参数建模.运用波函数法对中频声学响应进行计算分析,具有更高的精度和效率.Gauss积分与Newton积分法的对比,表明了Gauss积分法在该类边界计算中的快收敛与稳健性.

Abstract:

An acoustic predictive method for sound field including B-spline curve boundary with wave-based method (WBM) adopted was proposed based on the theory study of WBM and B-spline. The method was complemented through two different integrate methods. Two different analysis acoustic domains were obtained by changing the control parameters of spline curve, and the acoustic responses were calculated through the use of WBM and finite element method (FEM) with different sizes. The comparisons of the pressure distribution, the frequency response of reference point and the convergence of the two methods indicate that the proposed method can effectively extend the application of WBM in acoustic prediction with spline curve boundary, realize the variable parameter modeling more conveniently, and show the high precision and efficiency for mid-frequency acoustic calculation and analysis. The Gauss integral method is more rapid and steady in calculation of such boundary compared with Newton integral method.

收稿日期: 2016-08-29 出版日期: 2017-09-27
CLC:  U461  
基金资助:

重庆市基础与前沿研究计划资助项目(CSTC2015jcyjBX0075);中央高校基本科研业务费资助项目(106112016CDJZR335522).

通讯作者: 徐中明,男,教授,博导.ORCID:0000-0001-6930-457X.     E-mail: xuzm@cqu.edu.cn
作者简介: 夏小均(1988-),男,博士生,从事中频振动噪声与控制的研究.ORCID:0000-0002-7329-6151.E-mail:xiaxj@cqu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

夏小均, 徐中明, 张志飞, 贺岩松. 基于波函数法的样条边界声学域中频响应[J]. 浙江大学学报(工学版), 2017, 51(10): 2039-2045.

XIA Xiao-jun, XU Zhong-ming, ZHANG Zhi-fei, HE Yan-song. Mid-frequency acoustic response analysis of cavity with spline boundary based on wave-based method. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(10): 2039-2045.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2017.10.019        http://www.zjujournals.com/eng/CN/Y2017/V51/I10/2039

[1] WANG D, MONK N A. A least-squares method for the Helmholtz equation[J]. Computer Methods in Applied Mechanics and Engineering, 1999,175(1/2):121-136.
[2] BABUŠKA I, IHLENBURG F. A generalized finite element method for solving the Helmholtz equation in two dimensions with minimal pollution[J]. Computer Methods in Applied Mechanics and Engineering, 1995, 128(3/4):325-359.
[3] LOULA A,FERNANDES D T. A quasi optimal Petrov-Galerkin method for Helmholtz problem[J]. International Journal of Numerical Methods Engineering, 2009, 80(12):1595-1622.
[4] MELEN K,BABUSKA I. Approximation with harmonic and generalized harmonic polynomials in the partition of unity method[J]. Computer Assisted Mechanics and Engineering Sciences, 1997, 4(3):607-632.
[5] E PERREY D,TREVELYAN J,BETTESS P. Wave boundary elements:a theoretical overview presenting applications in scattering of short waves[J]. Engineering Analysis with Boundary Elements, 2004, 28(2):131-141.
[6] HARARI I,HUGHES T. Galerkin/least-squares finite element methods for the reduced wave equation with non-reflecting boundary conditions in unbounded domains[J]. Computer Methods in Applied Mechanics and Engineering, 1992, 98(3):411-454.
[7] MACE B,SHORTER P. Energy flow models from finite element analysis[J]. Journal of Sound and Vibration, 2000, 233(3):369-389.
[8] MAXIT L,GUYADER J. Estimation of SEA coupling loss factors using a dual formulation and FEM modal information, part I:theory[J]. Journal of Sound and Vibration, 2001, 239(5):907-930.
[9] LANGLEY R S,BREMNER P. A hybrid method for the vibration analysis of complex structural acoustic systems[J]. Journal of the Acoustical Society of America, 1999, 105(3):1657-1671.
[10] SAPENA J. Interior noise prediction in high-speed rolling stock driver's cab:focus on structure-borne paths (mechanical and aero sources)[J]. Mathematical Problems in Engineering, 2011, 118:445-452.
[11] SHORTER P, LANGLEY R. Modeling structure-borne noise with the hybrid FE-SEA method[C]//6th International Conference on Structural Dynamics. Paris:Cambridge University Press, 2005:1205-1210.
[12] SULEAU P. Element-free Galerkin solutions for Helmholtz problems:formulation and numerical assessment of the pollution effect[J]. Computer Methods in Applied Mechanics and Engineering, 1998, 162(1-4):317-335.
[13] FARHAT C, HARARI I, FRANCA C. The discontinuous enrichment method[J]. Computer Methods in Applied Mechanics and Engineering, 2001, 190(48):6455-6479.
[14] EZE R. The variational theory of complex rays:a predictive tool for medium frequency vibrations[J]. Computer Methods in Applied Mechanics and Engineering, 2003, 192(28):3301-3315.
[15] DESMET W. A wave based prediction technique for coupled vibro-acoustic analysis[D]. Leuven, Belgium:University of Leuven, 1998:2053-2063.
[16] VERGOTE K,VANMAELE C,VANDEPITTE D. An efficient wave based approach for the time-harmonic vibration analysis of 3D plate assemblies[J]. Journal of Sound and Vibration, 2013, 332(8):1930-1946.
[17] DECKERS E,BERGEN B,GENECHTEN B V. An efficient Wave Based Method for 2D acoustic problems containing corner singularities[J]. Computer Methods in Applied Mechanics and Engineering, 2012, 241-244(9):286-301.
[18] GENECHTEN B V,ATAK O,BERGEN B. An efficient Wave Based Method for solving Helmholtz problems in three-dimensional bounded domains[J]. Engineering Analysis with Boundary Elements, 2012,36(1):63-75.
[19] 马大猷.现代声学理论基础[M]. 北京:科学出版社, 2004:10-15.
[20] PIEGL L, TILLER W. The NURBS book[M]. 2nd ed. Berlin:Springer, 1997:50-99.
[21] KIUSALAAS J. Numerical methods engineering with MATLAB[M]. 2nd ed. Cambridge:Cambridge University Press, 2009:182-249.

[1] 刘立宁, 郗学峰, 杜广生, 雷丽. 侧风条件下加速超车过程车辆气动特性[J]. 浙江大学学报(工学版), 2019, 53(1): 174-179.
[2] 谢宪毅, 金立生, 高琳琳, 夏海鹏. 基于变权重系数的LQR车辆后轮主动转向控制研究[J]. 浙江大学学报(工学版), 2018, 52(3): 446-452.