Please wait a minute...
浙江大学学报(工学版)  2017, Vol. 51 Issue (10): 1967-1973    DOI: 10.3785/j.issn.1008-973X.2017.10.010
机械与能源工程     
超低排放燃煤机组SO2减排的环境影响
寿春晖1, 祁志福1, 李敏2, 邹正伟1, 刘春红1, 李晓东2
1. 浙江浙能技术研究院有限公司, 浙江 杭州 311121;
2. 浙江大学 能源清洁利用国家重点实验室, 浙江 杭州 310027
Environmental impact of ultra-low emission coal-fired unit's SO2 emission reduction
SHOU Chun-hui1, QI Zhi-fu1, LI Min2, ZOU Zheng-wei1, LIU Chun-hong1, LI Xiao-dong2
1. Zhejiang Energy Group R & D, Hangzhou 311121, China;
2. State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
 全文: PDF(2577 KB)   HTML
摘要:

为了探究实施"超低排放"工程后SO2质量浓度降低对周围环境的影响,选取AERMOD对某大型1 000 MW火电机组不同排放情景下SO2的迁徙规律进行预测,对质量浓度分布进行定量计算.结果表明,工程实施后,SO2最大落地质量浓度指标改善超过82%,占标率大幅降低;峰值区SO2质量浓度及不同维度均值占标均得到控制;模拟范围内不同维度SO2质量浓度指标及分布梯度同步减小.得益于排气筒高度条件,排放源1公里内区域浓度较低."超低排放"对改善机组SO2排放的环境影响、提升厂区周边环境的空气质量效果明显.

Abstract:

The atmospheric simulation software AERMOD was used to predict the transmission and diffusion of SO2 in different emission scenarios of a 1 000 MW coal-fired unit in order to analyze the effect of SO2 ultra-low emission reduction on the surrounding environment. The mass concentration distribution was quantified calculation. Results show that the maximum mass concentration of SO2 in the ambient air is reduced by more than 82% by the "ultra-low emission" project while the accounting for standard rate goes down substantially. The pollutant mass concentration in the peak distribution area and the mean value of the accounting for standard rate of each time period are controlled. The contaminant concentration index of each time period and its distribution gradient are synchronously reduced. Since the flue gas lift height is high, the concentration of areas within 1 km of emission source is low. "Ultra-low emission" projects decrease the environmental impact of SO2 emissions, and obviously improve the air quality of the surrounding environment.

收稿日期: 2016-06-15 出版日期: 2017-09-27
CLC:  TK284  
基金资助:

浙江省能源集团科技资助项目(ZN-KJ-15-013).

通讯作者: 李晓东,男,教授.ORCID:0000-0002-5331-5968.     E-mail: lixd@zju.edu.cn
作者简介: 寿春晖(1984-),男,博士,从事火电厂环保技术和新能源发电技术的研究.ORCID:0000-0002-8100-1149.E-mail:shouchunhui@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

寿春晖, 祁志福, 李敏, 邹正伟, 刘春红, 李晓东. 超低排放燃煤机组SO2减排的环境影响[J]. 浙江大学学报(工学版), 2017, 51(10): 1967-1973.

SHOU Chun-hui, QI Zhi-fu, LI Min, ZOU Zheng-wei, LIU Chun-hong, LI Xiao-dong. Environmental impact of ultra-low emission coal-fired unit's SO2 emission reduction. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(10): 1967-1973.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2017.10.010        http://www.zjujournals.com/eng/CN/Y2017/V51/I10/1967

[1] 莫华,张清宇,李杉,等.火电厂PM2.5环境影响评价方法探讨[J].浙江大学学报:理学版,2014,41(4):453-457. MO Hua, ZHANG Qing-yu, LI Shan, et al. Discussion for the method of environmental impact assessment on PM2.5 in thermal power plants[J]. Journal of Zhejiang University:Science Edition, 2014, 41(4):453-457.
[2] 张军,郑成航,张涌新,等.某1000MW燃煤机组超低排放电厂烟气污染物排放测试及其特性分析[J].中国电机工程学报, 2016, 36(5):1310-1314. ZHANG Jun, ZHENG Cheng-hang, ZHANG Yong-xin, et al. Experimental investigation of ultra-low pollutants emission characteristics from a 1000mw coal-fired power plant[J]. Proceedings of the CSEE, 2016,36(5):1310-1314.
[3] 国家统计局.中国统计年鉴[M].北京:中国统计出版社,2014:225.
[4] 朱法华,王临清.煤电超低排放的技术经济与环境效益分析[J].环境保护,2014,42(21):28-33. ZHU Fa-hua, WANG Lin-qing. Analysis on technology-economy and environment benefit of ultra-low emission from coal-fired power units[J]. Environment Protection, 2014, 42(21):28-33.
[5] 中华人民共和国环境保护部.GB 3095-2012,环境空气质量标准[S].北京:中国环境科学出版社,2012.
[6] 赵磊,周洪光.超低排放燃煤火电机组湿式电除尘器细颗粒物脱除分析[J].中国电机工程学报,2016, 36(2):468-473. ZHAO Lei, ZHOU Hong-guang. Particle remove efficiency analysis of WESP in an ultra-low emission coal-fired power plant[J]. Proceedings of the CSEE, 2016, 36(2):468-473.
[7] 帅伟,李立,崔志敏,等.基于实测的超低排放燃煤电厂主要大气污染物排放特征与减排效益分析[J].中国电力,2015,48(11):131-137. SHUAI Wei, LI Li, CUI Zhi-min, et al. Analysis of primary air pollutant emission characteristics and reduction efficiency for ultra-low emission coal-fired power plants based on actual measurement[J]. Electric Power, 2015, 48(11):131-137.
[8] 朱法华,王圣.煤电大气污染物超低排放技术集成与建议[J].环境影响评价,2014,36(5):25-29. ZHU Fa-hua, WANG Sheng. Ultra-low emissions of air pollutants coal technology integration and suggestions[J]. Environmental Impact Assessment, 2014, 36(5):25-29.
[9] 王临清,朱法华,赵秀勇.燃煤电厂超低排放的减排潜力及其PM2.5环境效益[J]. 中国电力,2014, 47(11):150-154. WANG Lin-qing, ZHU Fa-hua, ZHAO Xiu-yong. Potential capabilities of pollutant reduction and environmental benefits from ultra-low emissions of coal-fired power plants[J]. Electric Power, 2014, 47(11):150-154.
[10] 李明君,王燕,史震天,等."超低排放"下火电环境影响评价研究[J].环境影响评价,2015,37(4):18-21. LI Ming-jun, WANG Yan, SHI Zhen-tian, et al. Thermal power environmental impact assessment of "ultra-low emission"[J]. Environmental Impact Assessment, 2015, 37(4):18-21.
[11] 石睿,王佩华,杨倩, 等.燃煤电厂"超低排放"成本效益分析[J].环境影响评价,2015, 37(4):5-8. SHI Rui, WANG Pei-hua, YANG Qian, et al. Cost-benefit analysis of coal-fired power plant with "ultra-low emission"[J]. Environmental Impact Assessment, 2015, 37(4):5-8.
[12] 姚增权.火电厂烟羽的传输与扩散(精)[M].北京:中国电力出版社, 2003.
[13] BVKE T, KÖNE A Ç. Estimation of the health benefits of controlling air pollution from the Yataan coal-fired power plant[J]. Environmental Science and Policy, 2011, 14(8):1113-1120.
[14] CIMORELLI A J, PERRY S G, VENKATRAM A, et al. AERMOD:a dispersion model for industrial source applications. Part I:general model formulation and boundary layer characterization[J]. Journal of Applied Meteorology, 2005, 44(5):682-693.
[15] PERRY S G, CIMORELLI A J, PAINE R J, et al. AERMOD:a dispersion model for industrial source applications. Part Ⅱ:model performance against 17 field study databases[J]. Journal of Applied Meteorology, 2005, 44(5):694-708.
[16] 环保部.环境影响评价技术导则大气环境:HJ2.2-2008[S].北京:中国环境科学出版社,2008:12.
[17] 马洁云,易红宏,唐晓龙,等.基于AERMOD及减排政策的昆明市工业区SO2情景模拟[J].中国环境科学,2013,33(10):1884-1890. MA Jie-yun, YI Hong-hong, TANG Xiao-long, et al. SO2 scenario simulation of Kunming industrial park based on AERMOD modeling system and emission reduction policy[J]. China Environmental Science, 2013, 33(10):1884-1890.
[18] 李煜婷,金宜英,刘富强.AERMOD模型模拟城市生活垃圾焚烧厂二(噁)英类物质扩散迁移[J].中国环境科学,2013,33(6):985-992. LI Yu-ting, JIN Yi-ying, LIU Fu-qiang. Diffusion and transformation of PCDD/Fs of municipal waste incineration plant by using AERMOD model[J]. China Environmental Science, 2013, 33(6):985-992.
[19] SEANGKIATIYUTH K, SURAPIPITH V, TANTRAKARNAPA K, et al. Application of the AERMOD modeling system for environmental impact assessment of NO2 emissions from a cement complex[J]. Journal of Environmental Sciences, 2011, 23(6):45-53.
[20] TARTAKOVSKY D, STERN E, BRODAY D M. Dispersion of TSP and PM10 emissions from quarries in complex terrain[J]. Science of the Total Environment, 2016, 542:946-954.
[21] MA J, YI H, TANG X, et al. Application of AERMOD on near future air quality simulation under the latest national emission control policy of China:a case study on an industrial city[J]. Journal of Environmental Sciences, 2013, 25(8):1608-1617.
[22] KESARKAR A P, DALVI M, KAGINALKAR A, et al. Coupling of the weather research and forecasting model with AERMOD for pollutant dispersion modeling. a case study for PM10 dispersion over Pune, India[J]. Atmospheric Environment, 2007, 41(9):1976-1988.
[23] FROST K D. AERMOD performance evaluation for three coal-fired electrical generating units in Southwest Indiana[J]. Journal of the Air and Waste Management Association, 2014, 64(3):280-290.
[24] ZHAO J, YUAN Y, REN Y, et al. Environmental assessment of crop residue processing methods in rural areas of Northeast China[J]. Renewable Energy, 2015, 84:22-29.
[25] TADANO Y S, BORILLO G C, GODOI A F L, et al. Gaseous emissions from a heavy-duty engine equipped with SCR aftertreatment system and fuelled with diesel and biodiesel:assessment of pollutant dispersion and health risk[J]. Science of the Total Environment, 2014, 500-501:64-71.
[26] ROBERT P, OLGA S, MARY K, et al. Evaluation of low wind modeling approaches for two tall-stack databases[J]. Journal of the Air and Waste Management Association, 2015, 65(11):1341-1353.
[27] BOADH R, SATYANARAYANA A N V, KRISHNA T V B P S R, et al. Sensitivity of PBL parameterization schemes of weather research forecasting model and coupling with AERMOD in the dispersion of NOX over visakhapatnam (India)[J]. Asia-Pacific Journal of Chemical Engineering, 2015, 10(3):356-368.
[28] GULIA S, SHRIVASTAVA A, NEMA A K, et al. Assessment of urban air quality around a heritage site using AERMOD:a case study of Amritsar City, India[J]. Environmental Modeling and Assessment, 2015,20(6):599-608.
[29] 寿春晖,祁志福,陈彪,等.某1000MW燃煤机组超低排放改造减排NOX的环境效益评价[J].浙江电力,2016,35(12):21-25. SHOU Chun-hui, QI Zhi-fu, CHEN Biao, et al. Environmental impact assessment of a 1000MW ultra-lowemission coal-fired unit's NOX emission reduction[J]. Zhejiang Electric Power, 2016, 35(12):21-25.

[1] 周昊, 赵梦豪, 张昆, 李宁, 马炜晨. 中高开孔率多孔板高温环境下阻力特性试验研究[J]. 浙江大学学报(工学版), 2018, 52(10): 1888-1893.