Please wait a minute...
浙江大学学报(工学版)
机械与能源工程     
行波热声发电系统的阻抗匹配
章杰, 孙大明, 王凯, 罗凯, 张宁, 邹江
浙江大学 制冷与低温研究所,浙江 杭州 310027
Impedance matching of traveling-wave thermoacoustic electric generating system
ZHANG Jie, SUN Da-ming, WANG Kai, LUO Kai, ZHANG Ning, ZOU Jiang
Institute of Refrigeration and Cryogenics, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1301 KB)   HTML
摘要:

通过系统解耦的方法和理论分析,计算行波热声发动机输出特性和直线发电机的输入特性,同时开展行波热声发电机性能的理论和实验研究.模拟发现,当发动机声功输出处阻抗实部为1.0×107 ~2.0×107 Pa·s/m3、阻抗虚部在106 Pa·s/m3量级内时,发动机输出声功率及热声效率高,发动机高效工作的频率约为65.5 Hz;直线电机性能受工作频率、外接负载等因素的影响,最佳工作频率约为72 Hz,最优外接负载为80~200 Ω;在3.16 MPa的充气压力和550 ℃的加热温度下,该发电系统的理论发电功率达到了520 W以上,最高热电效率达到了24.4%;实验中,最高电功率达到了481 W,最高热电效率达到了15.1%.数值模拟结果与实验结果基本吻合,验证了物理模型的正确性,说明该热声发电系统实现了良好的阻抗匹配.

Abstract:
The output characteristics of a thermoacoustic engine and the input characteristics of linear alternators were calculated based on the decoupling method and theoretical analysis. Moreover, the performance of the traveling-wave thermoacoustic electric generator was studied theoretically and experimentally. Simulation results show that the engine output power and thermal-to-acoustic efficiency are high when the real part of output impedance is in the range of 1.0×107 to 2.0×107 Pa·s/m3, and the imaginary part is under magnitude order of 106 Pa·s/m3; the high-efficiency operating frequency is 65.5 Hz. The performance of the linear alternator is remarkably influenced by working frequency, load resistance, etc. The best working frequency for the alternator is 72 Hz and the optimal range of load resistance is 80 to 200 Ω. The electric generating system can attain 520 W in power and 24.4% in thermal-to-electric efficiency theoretically when the mean pressure is 3.16 MPa and the heating temperature is 550 ℃ in simulation. The experiment gives a maximum power of 481 W and a highest thermal-to-electric efficiency of 15.1%. The theoretical and experimental results are in coincidence basically, which proves the correctness of the physical model and the good impedance matching of the thermoacoustic electric generating system.
出版日期: 2017-03-01
CLC:  TM 61  
基金资助:

国家自然科学基金资助项目( 51476136);中国博士后科学基金资助项目(2013M541772)

通讯作者: 孙大明,男,副教授,ORCID: 0000-0002-1944-9807.     E-mail: sundaming@zju.edu.cn
作者简介: 章杰(1991—),男,硕士生,从事热声发电研究. ORCID: 0000-0003-1374-7827. E-mail: jiezhang_91@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

章杰, 孙大明, 王凯, 罗凯, 张宁, 邹江. 行波热声发电系统的阻抗匹配[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2017.03.009.

ZHANG Jie, SUN Da-ming, WANG Kai, LUO Kai, ZHANG Ning, ZOU Jiang. Impedance matching of traveling-wave thermoacoustic electric generating system. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2017.03.009.

[1] BACKHAUS S, TWARD E, PETACH M. Traveling-wave thermoacoustic electric generator [J]. Applied Physics Letters, 2004, 85(6): 1085-1087.
[2] WU Z H, ZHANG L M, DAI W, et al. Investigation on a 1 kW traveling-wave thermoacoustic electrical generator [J]. Applied Energy, 2014, 124: 140-147.
[3] WU Z H, YU G Y, ZHANG L M, et al. Development of a 3 kW double-acting thermoacoustic Stirling electric generator [J]. Applied Energy, 2014, 136: 866-872.
[4] BI T J, WU Z H, ZHANG L M, et al. Development of a5 kW traveling-wave thermoacoustic electric generator [J]. Applied Energy, 2017,185: 1355-1361.
[5] SUN D M, WANG K, ZHANG X J, et al. A traveling-wave thermoacoustic electric generator with a variableelectric RC load [J]. Applied energy, 2013, 106:377-382.
[6] WANG K, SUN D M, ZHANG J, et al. Operating characteristics and performance improvements of a 500W traveling-wave thermoacoustic electric generator [J]. Applied Energy, 2015, 160: 853-862.
[7] XIAO J H. Thermoacoustic heat transportation and energy transformation Part 1: formulation of the problem [J]. Cryogenics, 1995, 35(1): 15-19.
[8] XIAO J H. Thermoacoustic heat transportation and energy transformation Part 2: isothermal wall thermoacoustic effects [J]. Cryogenics, 1995, 35(1):21-26.
[9] XIAO J H. Thermoacoustic heat transportation and energy transformation Part 3: adiabatic wall thermoacoustic effects [J]. Cryogenics, 1995, 35(1): 27-29.
[10] SWIFT G W, GARRETT S L. Thermoacoustics: aunifying perspective for some engines and refrigerators [J]. The Journal of the Acoustical Society of America, 2003, 113(5): 2379-2381.
[11] 吴张华,罗二仓,戴巍.热声发电之直线发电机的理论研究[J].太阳能学报,2008,29(4): 493-497.
WU Zhang-hua, LUO Er-cang, DAI Wei. Theoretical investigation on linear alternator in thermoacoustic power generation system [J]. Acta Energiae Solaris Sinica, 2008, 29(4): 493-497.
[1] 刘芳,汪震,刘睿迪,王锴. 基于组合损失函数的BP神经网络风力发电短期预测方法[J]. 浙江大学学报(工学版), 2021, 55(3): 594-600.
[2] 陈棋,李丹阳,刘宏伟,林勇刚,李伟,丁京龙. 风电机组传动链地面测试系统载荷模拟技术[J]. 浙江大学学报(工学版), 2021, 55(2): 299-306.
[3] 吴浩宇,赵永生,何炎平,毛文刚,阳杰,谷孝利,黄超. 张力腿浮式风机筋腱失效模式下瞬态响应分析[J]. 浙江大学学报(工学版), 2020, 54(11): 2196-2203.
[4] 王光烛,陈坚红,洪细良,王小荣,陈强峰,盛德仁,李蔚. 联合循环发电系统全生命周期?环境学评估[J]. 浙江大学学报(工学版), 2019, 53(5): 972-980.
[5] 李鸿坤,陈坚红,盛德仁,李蔚. 联合循环机组热经济学H&S方法建模及性能评价[J]. 浙江大学学报(工学版), 2016, 50(1): 116-122.
[6] 殷秀兴, 顾亚京, 林勇刚, 叶杭冶, 李伟. 复现风力机五自由度载荷的加载控制方法[J]. 浙江大学学报(工学版), 2015, 49(8): 1470-1477.
[7] 吴越, 张国月, 杨捷, 齐冬莲. 新能源变流器SSR-MDF控制方法[J]. 浙江大学学报(工学版), 2015, 49(8): 1516-1521.
[8] 殷秀兴,林勇刚,李伟,顾亚京,刘宏伟. 电液数字马达变桨距控制与辨识[J]. 浙江大学学报(工学版), 2014, 48(5): 777-783.
[9] 殷秀兴, 林勇刚, 李伟, 顾亚京, 楼杉, 刘宏伟. 基于电液行星锥齿马达的变桨距控制[J]. J4, 2014, 48(2): 206-213.
[10] 王德明, 王莉, 张广明. 基于遗传BP神经网络的短期风速预测模型[J]. J4, 2012, 46(5): 837-841.
[11] 姚华,盛德仁,林张新,宋思远,陈坚红,李蔚. 炼铁伴生能源联合循环系统热力学性能分析[J]. J4, 2011, 45(11): 2008-2013.