Please wait a minute...
浙江大学学报(工学版)
自动化技术、通信工程     
非均匀组织医学超声非线性传播仿真
周浩,郑音飞
浙江大学 生物医学工程教育部重点实验室,浙江 杭州 310027
Simulation of nonlinear ultrasound propagation in heterogeneous tissue
ZHOU Hao, ZHENG Yin fei
Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1223 KB)   HTML
摘要:

为了实现仿真医学超声波在非均匀组织中的传播过程,建立超声非线性传播计算模型.由软组织中一阶非线性波动方程推导得出“声压 质点振动速度”耦合超声非线性波动方程以降低求解复杂度.采用k空间方法对非线性波动方程组求解,在保证数值计算精度的同时降低计算的内存占用量和计算时间.通过与一维问题的解析解和二维问题的时域有限差分(FDTD)求解结果对比,验证所述模型的精度.在空间采样率为声波波长的1/9、Courant Friedrichs Lewy(CFL)数为0.3的情况下,所述模型的平方误差为0.012 5%,而时域有限差分方法(FDTD)的平方误差为42.5%.利用体腹壁组织数字模型,进行医学超声谐波成像仿真,验证谐波成像较基波成像能够提高深部组织区域的图像质量.

Abstract:

A numerical model was proposed for the simulation of the nonlinear ultrasound propagation in heterogeneous tissue. First, the  coupled nonlinear wave equations for pressure and velocity were obtained based on 1 st order nonlinear wave equations in soft tissue to reduce the complexity of numerical computation. Then, k space method was used to solve the derived nonlinear wave equations to reduce the memory usage and the computation time of the simulation, while preserving the computation accuracy. Compared with the analytic solution of a 1 dimensinal problem and the finite different time domain (FDTD) results of a 2 dimensinal problem, and the accuracy of the proposed model was validated. With grid size of 1/9 of the wavelength and Courant Friedrichs Lewy (CFL) of 0.3, the square errors of the proposed model and the FDTD method are 0.0125% and 42.5%, respectively. Medical harmonic ultrasound imaging was simulated using the proposed method based on a digital human abdominal map. The results show that image quality can be improved in the deeper tissue by using the harmonic signal. 

出版日期: 2016-09-18
:  TN 98  
基金资助:

中央高校基本科研业务费专项资金资助项目(2015FZA5019,2016FZA5015).

通讯作者: 郑音飞,男,副教授. ORCID:0000 0001 6837 2634.     E-mail: zyfnjupt@126.com
作者简介: 周浩(1984-),男,博士生,从事医学超声成像技术研究. ORCID:0000 0001 6894 1139. E-mail:bmezhou@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

周浩,郑音飞. 非均匀组织医学超声非线性传播仿真[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2016.03.023.

ZHOU Hao, ZHENG Yin fei. Simulation of nonlinear ultrasound propagation in heterogeneous tissue. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2016.03.023.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2016.03.023        http://www.zjujournals.com/eng/CN/Y2016/V50/I3/574

[1] SZABO T L. Diagnostic ultrasound imaging [M]. Burlington: Elsevier, 2004:381428.
[2] 周浩, 王友钊, 郑音飞. 医学超声编码激励技术研究进展 [J]. 浙江大学学报:工学版, 2011, 45(2):387391.
ZHOU Hao, WANG You zhao, ZHENG Yin fei. The advance of medical ultrasonic coded excitation [J]. Journal of Zhejiang University:Engineering Science, 2011, 45(2): 387391.
[3] JI X, BAI J F, SHEN G F, et al. High intensity focused ultrasound with large scale spherical phased array for the ablation of deep tumors [J]. Journal of Zhejiang University SCIENCE B, 2009, 10(9):639647.
[4] YING Z M, LIN T, YAN S G. Low intensity pulsed ultrasound therapy: a potential strategy to stimulate tendon bone junction healing [J]. Journal of Zhejiang University SCIENCE B, 2012, 13(12): 955963.
[5]  DHANALIWALA A H, HOSSACK J A, MAULDIN F W. Assessing and improving acoustic radiation force image quality using a 1.5 D transducer design [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2012, 59(7): 16021608.
[6]  VARRAY, F, BASSET O, TORTOLI P, et al. Extensions of nonlinear B/A parameter imaging methods for echo mode [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2011, 58(6): 12321244.
[7] 郑音飞, 邱飞岳, 李鹏, 等. 基于发射束迭代算法的超声波色差抑制方法研究 [J]. 传感技术学报, 2009, 22(2): 240243.
ZHENG Yin fei, QIU Fei yue, LI Peng, et al. Study of reduction aberration of ultrasound image based on iteration of transmit [J]. Chinese Journal of Sensors and Actuators, 2009, 22(2): 240 243.
[8] GJERALD S U, BREKKEN R, HERGUM T, et al. Real time ultrasound simulation using the GPU [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2012, 59(5): 885892.
[9] HILUND KAUPANG H, MSY S E. Transmit beamforming for optimal second harmonic generation [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2011, 58(8): 15591569.
[10] 吴施伟, 吴海腾, 金浩然, 等. 聚焦探头水浸检测下的频域合成孔径聚焦技术 [J]. 浙江大学学报:工学版, 2015, 49(1):110115.
WU Shi wei, WU Hai teng, JIN Hao ran, et al. Frequency domain synthetic aperture focusing technique for immersion testing using focused transducer [J]. Journal of Zhejiang University:Engineering Science, 2015, 49(1):110115.
[11]  VARSLOT T, TARALDSEN G. Computer simulation of forward wave propagation in soft tissue [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2005, 52(9): 14731482.
[12] JING Y, CLEVELAND R O. Modeling the propagation of nonlinear three dimensional acoustic beams in inhomogeneous media [J]. Journal of the Acoustical Society of America, 2007, 122(3): 13521364.
[13] 刘伟, 杨军, 田静. 有限振幅波的三维时域建模[J]. 声学学报, 2010,36(4): 349357.
LIU Wei, YANG Jun, TIAN Jing. Time domain modeling of finite amplitude sound beams in three dimensional Cartesian coordinate system [J]. Acta Acoustica, 2010, 36(4): 349357.
[14] 解卓丽, 周浩, 郑音飞. 非均匀组织医学超声发射声场仿真. 声学学报, 2013, 38(6):657662.
XIE Zhuo li, ZHOU Hao, ZHENG Yin fei. Simulation of the acoustic field emitted from medical linear transducer in a heterogeneous tissue [J]. Acta Acoustica, 2013, 38(6):657662.
[15] HALLAJ O, CLEVELAND R O. FDTD simulation of finite amplitude pressure and temperature fields for biomedical ultrasound [J]. Journal of the Acoustical Society of America, 1999, 105(5):L7L12.
[16] PINTON G F, DAHL J, ROSENZWEIG S, et al. A heterogeneous nonlinear attenuating full wave model of ultrasound [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2009, 56(3): 474488.
[17] JING Y, WANG T, CLEMENT G T. A k space method for moderately nonlinear wave propagation [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2012, 59(8): 16641673.
[18] TABEI M, MAST T D, WAAG R C. A k space method for coupled first order acoustic propagation equations [J]. Journal of the Acoustical Society of America, 2002, 111(1): 5363.
[19] HAMILTON M F, MORFEY C L. Model equations [M]∥ Nonlinear Acoustics. Melville: Acoustical Society of America, 2008: 4162.
[20] YUAN X, BORUP D, WISKIN J W, et al. Formulation and validation of Berenger’s PML absorbing boundary for the FDTD simulation of acoustic scattering [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1997, 44(4): 816822.
[21] BLACKSTOCK D T, HAMILTON M F, PIERCE A D. Progressive waves in lossless and lossy fluids [M]∥ Nonlinear Acoustics. Melville: Acoustical Society of America, 2008: 65147.
[22] MAST T D, HINKELMAN L M, ORR M J, et al.. Simulation of ultrasonic pulse propagation through the abdominal wall [J]. Journal of the Acoustical Society of America, 1997, 102(2): 11771190.
[23] ZHOU H, ZHENG Y F. An efficient quadrature demodulator for medical ultrasound imaging [J]. Frontiers of Information Technology and Electronic Engineering, 2015, 16(4): 301310.
[24] COX B. Acoustics for ultrasound imaging [EB/OL]. [2015 3 10]. http:∥www.ucl.ac.uk/medphys/staff/people/bcox/bens_lecture_notes.
[25] NVIDIA Corporation. cuFFT [CP/OL]. [2015 3 10]. https://developer.nvidia.com/cufft.

[1] 周密,周浩,郑音飞. 基于平面波的高帧频向量血流成像[J]. 浙江大学学报(工学版), 2016, 50(7): 1410-1417.
[2] 许雪梅,倪兰,张键洋,刘丽娟,邓联文,曹粲,杜作娟. 高速串行系统码间干扰及等效电压噪声[J]. J4, 2014, 48(1): 118-123.
[3] 许雪梅,张键洋,倪 兰,刘丽娟,邓联文,杜作娟. 高速电子系统非均匀传输线辐射问题 [J]. J4, 2013, 47(7): 1238-1245.