Please wait a minute...
浙江大学学报(工学版)
电气工程     
高湿氢氧喷注器数值分析与正交设计
胡友瑞1,刘彦1,汪洋2,刘建忠1,周俊虎1,胡巍3,李洪伟3
1.浙江大学 能源清洁利用国家重点实验室,浙江 杭州 310027; 2.浙江大学 工业技术研究院,浙江 杭州 310027;3.中国船舶重工集团公司第七〇五研究所,陕西 西安 710075
Numerical simulation and orthogonal optimization design for high humidity hydrogen oxygen injector
HU You rui1, LIU Yan1, WANG Yang2, LIU Jian zhong1, ZHOU Jun hu1, HU Wei3, LI Hong wei3
1. State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China; 2. Institutes of Industrial Technology, Zhejiang University, Hangzhou 310027, China; 3. 705 Research Institute of CSIC, Xi’an 710075, China
 全文: PDF(988 KB)   HTML
摘要:

采用基于数值模拟的正交实验优化设计方法对应用于氢氧蒸汽发生器的高湿氢氧同轴剪切喷注器进行研究,分析燃烧室流场、温度场和组分分布情况.以燃烧长度作为燃烧性能评价指标,以燃烧室壁面平均温度作为壁面热负荷的评价指标,研究氧气喷注速度(20~40 m/s)、高湿氢氧速度比(3~7)和氧喷嘴端面厚度(0.5~1.5 mm)对高湿氢氧燃烧器燃烧性能和燃烧室壁面热负荷的影响.结果表明:燃烧室头部存在利于点火和维持稳定燃烧的回流区,高湿氢气和氧气射流之间存在高温剪切燃烧层.高湿氢氧速度比对燃烧性能和燃烧室壁面热负荷的影响最为显著,氧喷注速度次之;而氧喷嘴端面厚度影响对燃烧性能和燃烧室壁面热负荷的影响均不明显. 增大氧气喷注速度和速度比会缩短燃烧长度,提高燃烧性能,但同时增大燃烧室壁面热负荷.高湿氢氧速度比和氧气喷注速度的交互作用对燃烧性能、燃烧室壁面热负荷的影响显著,其他参数交互作用产生的影响都非常小.在所研究的工况范围内,最短燃烧室长度为68 mm,最低壁面温度燃气温度为1 966.9 K.

Abstract:

The performance of a high humidity hydrogen/oxygen shear coaxial injector applied in oxy hydrogen steam generator was studied through a CFD based orthogonal experiment design method. The flow field, temperature field and composition distribution were analyzed. The influences of oxygen velocity (20 40 m/s), the velocity ratio of high humidity hydrogen to oxygen (3 7) and the oxygen post tip wall thickness (0.5 1.5 mm) on combustion performance and the heat load of combustion chamber were explored. Results show that the recirculation zone near the combustor dome can promote ignition and combustion stability, and there is flame in the shear layer between the high humidity hydrogen jet and the oxygen jet. The velocity ratio of high humidity hydrogen to oxygen has most remarkable influence on the combustion performance and the heat load of combustion chamber, and the oxygen velocity is the second major factor, while the oxygen post tip wall thickness has insignificant influence. The increase of oxygen velocity or velocity ratio will shorten the length of combustion length, improving the combustion performance, but will increase the chamber heat load. The interaction between velocity ratio and oxygen velocity has remarkable influence on the combustion performance and the heat load of combustion chamber, while the interaction of other parameters has insignificant influence. As a result, the shortest combustion length is 68 mm and the lowest wall temperature is 1 966.9 K.

出版日期: 2015-12-31
:  TK 16  
基金资助:

国家重点基础研究发展计划资助项目(51336010);国家自然科学基金资助项目(51106135);中国航天科技集团公司航天科技创新基金资助项目(YF 2014 0106 wx)

通讯作者: 汪洋,男,助理研究员. ORCID: 0000 0002 5383 8152.     E-mail: 10508107@zju.edu.cn
作者简介: 胡友瑞(1990—),男,博士生,从事氢氧蒸汽动力研究. ORCID: 0000 0003 4082 5077.E-mail: huyourui26@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

胡友瑞,刘彦,汪洋,刘建忠,周俊虎,胡巍,李洪伟. 高湿氢氧喷注器数值分析与正交设计[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2015.12.021.

HU You rui, LIU Yan, WANG Yang, LIU Jian zhong, ZHOU Jun hu, HU Wei, LI Hong wei. Numerical simulation and orthogonal optimization design for high humidity hydrogen oxygen injector. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2015.12.021.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2015.12.021        http://www.zjujournals.com/eng/CN/Y2015/V49/I12/2403

[1] MALYSHENKO S P, GRYAZNOV A N, FILATOV I N, et al. High pressure H2/O2 steam generators and their possible applications [J]. International Journal of Hydrogen Energy, 2004,29(6): 589-596
[2] MALYSHENKO S P, PRIGOZHIN V I, SAVICH A R, et al. Effectiveness of steam generation in oxyhydrogen steam generators of the megawatt power class [J]. High Temperature, 2012, 50(6): 765-773.
[3] ALABBADI S A, Hydrogen oxygen steam generator integrating with renewable energy resource for electricity generation [J]. Energy Procedia, 2012,29(7): 1220.
[4] GAMBINI M, GUIZZI G L, VELLINI M.H2/O2 cycles: Thermodynamic potentialities and limits [J]. Journal of Engineering for Gas Turbines and Power, 2005, 127(3): 553563.
[5] GAMBINI M, VELLINI M. Comparative analysis of H2/O2 cycle power plants based on different hydrogen production systems from fossil fuels [J]. International Journal of Hydrogen Energy, 2005, 30(6): 593-604.
[6] CHIESA P, LOZZA G, AND MAZZOCCHI L. Using hydrogen as gas turbine fuel [J]. Journal of Engineering for Gas Turbines and Power, 2005, 127(1): 7375.
[7] GAZZANI M, CHIESA P, MARTELLI E, et al.Using hydrogen as gas turbine fuel: premixed versus diffusive flame combustors [J]. Journal of Engineering for Gas Turbines and Power, 2014, 136(5): 501-504.
[8] ITO S. Conceptual design and cooling blade development of 1700C class high temperature gas turbine [J]. Journal of Engineering for Gas Turbines and Power, 2005, 127(2): 358-368.
[9] IWASAKI W.A consideration of the economic efficiency of hydrogen production from biomass [J]. International Journal of Hydrogen Energy, 2003,28(9): 939944.
[10] RAVI S, PETERSEN E L. Laminar flame speed correlations for pure hydrogen and high hydrogen content syngas blends with various diluents [J]. International Journal of Hydrogen Energy, 2012, 37(24): 19177-19189.
[11] MASQUELET M, MENON S. Large eddy simulation of flame turbulence interactions in a GH2 GO2 shear coaxial injector [C]∥ AIAA Joint Propulsion Conference and Exhibit. Cincinnati: AIAA.2008: 143-153.
[12] TKATCHENKO I,KORNEV N, JAHNKE S, et al. Performances of LES and RANS models for simulation of complex flows in a coaxial jet mixer flow [J]. FLOW Turbulence Combustion, 2006,78(2):111-127.
[13] THAKUR S, WRIGHT J, IHME M, et al. Simulation of a shear coaxial GO2/GH2 rocket injector with DES and LES using flamelet models [C] ∥ AIAA Joint Propulsion Conference and Exhibit. Atlanta: AIAA, 2012: 744-756.
[14] ALEXANDER S S, DRISCOLL J F. Mixing properties of coaxial jets with large velocity ratios and large inverse density ratios [J]. Physics of Fluids, 2012,24(5): 55101.
[15] 刘文卿.实验设计[M].北京:清华大学出版社,2005: 64-100.
[16] LIN J,WEST J,WILLIAMS R, et al. CFD code validation of wall heat fluxes for a GO2/GH2 single element combustor [C] ∥AIAA Joint Propulsion Conference and Exhibit, Tucson : AIAA, 2005: 812-822.
[17] TUCKER P, MENON S, MERKLE C, et al. Validation of high fidelity CFD simulations for rocket injector design [C]∥ AIAA Joint Propulsion Conference and Exhibit, Atlanta: AIAA,2008: 564-573.
[18] JI C W, LIUX L, WANG S F, et al. Development and validation of a laminar flame speed correlation for the CFD simulation of hydrogen enriched gasoline engines [J]. International Journal of Hydrogen Energy, 2013, 38(4): 1997-2006.
[19] 李茂,杜正刚,金平,等.富氢/富氧燃气同轴气 气喷嘴燃烧性能仿真与分析[J].航空动力学报, 2010,25(4): 469-473.
LI Mao, DU Zheng gang, JIN Ping, et al. Simulation and analysis on combustion performance of hydrogen rich/oxygen rich gas gas coaxial injectors [J]. Journal of Aerospace Power, 2010,25(4): 469-473.
[20] 李茂,金平,蔡国飙.富氢/富氧燃气同轴剪切气 气喷嘴性能仿真分析[J].航空动力学报, 2010,25(12): 2827-2833.
LI Mao, JIN Ping, CAI Guo biao. Performance simulation analysis for hydrogen rich/oxygen rich shear coaxial gas gas injector [J]. Journal of Aerospace Power, 2010,25(12): 282-728.

No related articles found!