Please wait a minute...
浙江大学学报(工学版)
能源与机械工程     
普通旋压工艺及旋轮轨迹研究现状与发展
潘国军1, 李勇2, 王进2, 陆国栋2
1. 浙江广播电视大学,浙江 杭州 310030;2. 浙江大学 流体动力与机电系统国家重点实验室,浙江 杭州 310027
Review of conventional spinning process and its roller path design development
PAN Guo-jun1, LI Yong2, WANG Jin2, LU Guo-dong2
1. Zhejiang Radio and Television University, Hangzhou 310030, China; 2. State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1838 KB)   HTML
摘要:

整理了普通旋压工艺及旋轮轨迹方面的现有主要研究成果.在普通旋压工艺方面,旋压机理在模型构建及工艺分析方面已有较好的研究基础与成果,不足在于仅能实现特定工况下特定成形缺陷的控制与预测,因而尚无法实现有效的整体工艺优化.在旋轮轨迹方面,单道次轨迹研究多为定性影响研究,对于普通旋压适用的复杂曲母线类零件研究较少;多道次轨迹规划研究多集中于利用纯几何方法进行曲线设计与规划,成形精度受到限制,无法实现对工业生产的指导.提高仿真效率、实现仿真方法在旋压工艺机理与失效研究以及旋轮轨迹曲线定量设计中的应用,将几何设计方法与旋压成形特性结合以实现多道次轨迹规划是后续研究的难点与重点.

Abstract:

An in-depth survey of current research on the conventional spinning process and its roller paths design was presented. For the conventional spinning process, lots of researches were concentrated on the revealing of mechanism of the process, but the controlling and predicting of forming defects can only be achieved to the particular products now. With regard to the roller path designing and planning, most of the works done were analyzed in a qualitative way with the single pass spinning process, regardless of the complex surface of the final products which is mostly applied to multi-pass conventional spinning. The accuracy of the final products is still poor because the roller paths planning methods used were mostly in pure geometrical way, largely limiting the application of the process to industrial production. Thus the further research focus in multi-pass conventional spinning can potentially lie to two aspects: improving the simulation efficiency and accuracy to reveal a deeper understanding in process mechanism and defects and realizing a quantitative method for the multi-roller-passes designing and planning by considering both geometrical and technological constraints.

出版日期: 2015-04-01
:  TH 16  
基金资助:

教育部博士点基金资助项目(优先发展领域)(20120101130003);浙江省科技计划资助项目(2013C01135);浙江大学流体动力与机电系统国家重点实验室青年基金资助项目(SKLoFP_QN_1301);高等学校访问学者教师专业发展资助项目(FX2012084)

通讯作者: 王进,男,副教授     E-mail: dwjcom@zju.edu.cn
作者简介: 潘国军(1979—),男,副教授,从事机械电子及机械设计的研究. E-mail: 185303952@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

潘国军, 李勇, 王进, 陆国栋. 普通旋压工艺及旋轮轨迹研究现状与发展[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2015.04.006.

PAN Guo-jun, LI Yong, WANG Jin, LU Guo-dong. Review of conventional spinning process and its roller path design development. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2015.04.006.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2015.04.006        http://www.zjujournals.com/eng/CN/Y2015/V49/I4/644

[1] 刘建华, 杨合. 多道次普旋技术发展与旋轮轨迹的研究[J]. 机械科学与技术, 2003, 22(5): 805-807.
LIU Jian-hua, YANG He. Multi-passes conventional spinning development and its roller traces research [J]. Mechanical Science and Technology, 2003, 22(5): 805-807.
[2] MUSIC O, ALLWOOD J M, KAWAI K. A review of the mechanics of metal spinning [J]. Journal of Materials Processing Technology, 2010, 210(1): 323.
[3] FAN S, ZHAO S, ZHANG Q, et al. Plastic mechanism of multi-pass double-roller clamping spinning for arc-shaped surface flange [J]. Chinese Journal of Mechanical Engineering, 2013, 26(6): 1127-1137.
[4] 牛卫中. 锥盘形工件普旋中最大旋压力的确定[J]. 兰州铁道学院学报, 1998, 17(3): 55-59.
NIU Wei-zhong. Determination of spinning force in conventional spinning process of taper-plate work [J]. Journal of Lanzhou Railway Institute, 1998, 17(3): 55-59.
[5] 王强, 汪涛, 王仲仁. 圆板毛坯普旋过程的力学解析及实验研究[J]. 锻压技术, 1988(6): 012.
WANG Qiang, WANG Tao, WANG Zhong-ren. Analytical method and experiments for plectane sheet conventional spinning process [J]. Forging and Stamping Technology, 1988(6): 012.
[6] EL-KHABEERY M M, FATTOUH M, EL-SHEIKH M N, et al. On the conventional simple spinning of cylindrical aluminium cups [J]. International Journal of Machine Tools and Manufacture, 1991, 31(2): 203-219.
[7] SORTAIS H C, KOBAYASHI S, THOMSEN E G. Mechanics of conventional spinning [J]. Journal of Engineering for Industry, 1963, 85(4): 346-350.
[8] QUIGLEY E, MONAGHAN J. Metal forming: an analysis of spinning processes [J]. Journal of Materials Processing Technology, 2000, 103(1): 114-119.
[9] KANG D C, GAO X C, MENG X F, et al. Study on the deformation mode of conventional spinning of plates [J]. Journal of Materials Processing Technology, 1999, 91(1): 226-230.
[10] WANG L, LONG H. Investigation of material deformation in multi-pass conventional metal spinning [J]. Materials and Design, 2011, 32(5): 2891-2899.
[11] QUIGLEY E, MONAGHAN J. Enhanced finite element models of metal spinning [J]. Journal of Materials Processing Technology, 2002, 121(1): 43-49.
[12] RAZAVI H, BIGLARI F R, TORABKHANI A. Study of strains distribution in spinning process using FE simulation and experimental work [C]∥Proceedings of the Tehran International Congress on Manufacturing Engineering. Tehran, Iran: [s. n.], 2005.
[13] 齐麦顺. 铝合金轮毂拉深旋压成形模拟和试验[J]. 有色金属, 2012, 62(2): 40-46.
QI Mai-shun. Simulation and experiment on aluminum alloy hub draw-spinning [J]. Nonferrous Metals, 2012, 62(2): 40-46.
[14] 马飞,杨合,詹梅.工艺参数对平板毛坯普旋成形的影响规律[J].机械科学与技术, 2007, 26(3): 309-313.
MA Fei, YANG He, ZHAN Mei. Influence of process parameters on conventional spinning formation process [J]. Mechanical Science and Technology, 2007, 26(3): 309-313.
[15] 冯晗. 用普通旋压工艺成形风机零件轮毂[J]. 机电技术, 2006, 28(2): 62-66.
FENG Han. Fan hub forming with conventional spinning process [J]. Electromechanical Technology, 2006, 28(2): 62-66.
[16] 韩冬, 赵升吨, 张立武, 等. TC4 合金复杂型面工件薄壁旋压成形工艺[J]. 锻压装备与制造技术, 2006, 40(6): 66-68.
HANG Dong, ZHAO Sheng-dun, ZHANG Li-wu, et al. Spinning process of thin walled TC4 alloys complicated parts [J]. Stamping Equipment and Manufacture Technology, 2006, 40(6): 66-68.
[17] 吴统超, 詹梅, 蒋华兵, 等. 旋压间隙对大型复杂薄壁壳体多道次旋压中第二道次成形质量的影响[J]. 西北工业大学学报, 2011, 29(001): 74-81.
WU Tong-chao, ZHAN Mei, JIANG Hua-bing, et al. Exploring effect of spinning gap on forming quality of second pass spinning of large-sized complicated thin-walled shell [J]. Journal of Northwestern Polytechnical University, 2011, 29(001): 74-81.
[18] 吴统超, 詹梅, 古创国, 等. 大型复杂薄壁壳体第一道次旋压成形质量分析[J]. 材料科学与工艺, 2011, 19(1): 121-126.
WU Tong-chao, ZHAN Mei, GU Chuang-guo, et al. Forming quality of the first pass spinning of large-sized complicated thin-walled shell [J]. Cailiao Kexue Yu Gongyi, 2011, 19(1): 121-126.
[19] MA F, YANG H, ZHAN M. Research on the curvature radius of roller-trace in the forming process of conventional spinning [J]. Materials Science Forum, 2006, 532: 277-280.
[20] 胡文骏. 薄壁曲母线形件旋压成形的数值模拟及工艺研究[D]. 湘潭:湘潭大学, 2011.
HU Wen-jun. Simulation and process research of spinning process with thin walled generatrix parts [D]. Xiang Tan: Xiang Tan University, 2011.
[21] 耿艳青. 多道次普通旋压成形工艺试验及数值模拟研究[D]. 南昌:南昌航空大学, 2012.
GEN Yan-qing. Experiments and simulation of multi-passes conventional spinning process [D]. Nan Chang: Nan Chang Aviation University, 2012.
[22] KOBAYASHI S. Instability in conventional spinning of cones [J]. Journal of Engineering for Industry, 1963, 85(1): 44-48.
[23] WANG L, LONG H, ASHLEY D, et al. Effects of the roller feed ratio on wrinkling failure in conventional spinning of a cylindrical cup [J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2011, 225(11): 1991-2006.
[24] KLEINER M, GOBEL R, KANTZ H, et al. Combined methods for the prediction of dynamic instabilities in sheet metal spinning [J]. CIRP Annals-Manufacturing Technology, 2002, 51(1): 209-214.
[25] XIA Q, SHIMA S, KOTERA H, et al. A study of the one-path deep drawing spinning of cups [J]. Journal of Materials Processing Technology, 2005, 159(3): 397-400.
[26] ESSA K, HARTLEY P. Numerical simulation of single and dual pass conventional spinning processes [J]. International Journal of Material Forming, 2009, 2(4): 271-281.
[27] ESSA K, HARTLEY P. Optimization of conventional spinning process parameters by means of numerical simulation and statistical analysis [J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2010, 224(11): 1691-1705.
[28] AUER C, ERDBDRUGGE M, GOBEL R. Comparison of multivariate methods for robust parameter design in sheet metal spinning [J]. Applied Stochastic Models in Business and Industry, 2004, 20(3): 201-218.
[29] KUNERT J, AUER C, ERDBDRUGGE M, et al. An experiment to compare the combined array and the product array for robust parameter design [R]. Dortmund: SFB 475 Komplexittsreduktion in Multivariaten Datenstrukturen, 2003.
[30] HENKENJOHANN N, GOBEL R, KLEINER M, et al. An adaptive sequential procedure for efficient optimization of the sheet metal spinning process [J]. Quality and Reliability Engineering International, 2005, 21(5): 439-455.
[31] FREY D D, LI X. Using hierarchical probability models to evaluate robust parameter design methods [J]. Journal of Quality Technology, 2008, 40(1): 59.
[32] 马振平, 孙昌国. 普旋道次曲线轨迹对成形影响分析[J]. 锻压技术, 1999 (1): 21-24.
MA Zhen-ping, SUN Chang-guo. The effects of roller paths on the forming quality of conventional spinning process [J]. Forging and Stamping Technology, 1999 (1): 21-24.
[33] HAYAMA M, KUDO H, SHINOKURA T. Study of the pass schedule in conventional simple spinning [J]. Bulletin of JSME, 1970, 13(65): 1358-1365.
[34] 刘建华. 多道次普通旋压成形机理与旋轮运动轨迹作用的研究[D]. 西安:西北工业大学, 2003.
LIU Jian-hua. Multi-passes conventional spinning deforming mechanism and roller paths effects research [D]. Xi’an: The Northwest Technology University, 2003.
[35] 夏琴香, 陈适先, 曹庚顺, 等. 采用渐开线仿形模板进行锥状预制坯的普旋[J]. 锻压技术, 1993(3): 008.
XIA Qin-xiang, CHEN Shi-xian, CAO Gen-shun, et al. Conventional spinning of cone parts with involute model template [J]. Forging and Stamping Technology, 1993(3): 008.
[36] 魏战冲, 李卫东, 万敏, 等. 旋轮加载轨迹与方式对多道次普通旋压成形的影响[J]. 塑性工程学报, 2010, 17(3): 108112.
WEI Zhan-chong, LI Wei-dong, WAN Min, et al. Influence of roller-trace on multi-pass conventional spinning process [J]. Journal of Plasticity Engineering, 2010, 17(3): 108-112.
[37] 詹梅, 李虎, 杨合, 等. 大型复杂薄壁壳体多道次旋压过程中的壁厚变化[J]. 塑性工程学报, 2008, 15(2): 115121.
ZHAN Mei, LI Hu, YANG He, et al. Wall thickness variation during multi-pass spinning of large complicated shell [J]. Journal of Plasticity Engineering, 2008, 15(2): 115-121.
[38] 刘兴家, 张奕黄. 封头旋压成形旋轮运动轨迹确定方法的研究[J]. 塑性工程学报, 1997, 4(4): 84-90.
LIU Xing-jia, ZHANG Yi-huang. How to select the moving passes of the spinning roller [J]. Journal of Plasticity Engineering, 1997, 4(4): 84-90.
[39] 陈嘉, 万敏, 李卫东, 等. 多道次普通旋压渐开线轨迹设计及其在数值模拟中的应用[J]. 塑性工程学报, 2009, 15(6): 53-57.
CHEN Jia, WAN Min, LI Wei-dong, et al. Design of the involute trace of multi-pass conventional spinning and application in numerical simulation [J]. Journal of Plasticity Engineering, 2009, 15(6): 53-57.
[40] LIU J H, YANG H, LI Y Q. A study of the stress and strain distributions of first-pass conventional spinning under different roller-traces [J]. Journal of Materials Processing Technology, 2002, 129(1): 326-329.
[41] WANG L, LONG H. A study of effects of roller path profiles on tool forces and part wall thickness variation in conventional metal spinning [J]. Journal of Materials Processing Technology, 2011, 211(12): 2140-2151.
[42] 刘福岩, 王爱玲. B 样条族在旋压加工中的应用[J]. 锻压技术, 1994(2): 36-40.
LIU Fu-yan, WANG Ai-lin. The application of B spline curve in spinning manufacture process [J]. Forging and Stamping Technology, 1994(2): 36-40.
[43] WANG L, LONG H. Roller path design by tool compensation in multi-pass conventional spinning [J]. Materials and Design, 2013, 46(2013): 645-653.
[44] WANG Q, WANG L, JIANG Z, et al. Algorithm for the generation of mandrel protection curve and trajectory scheme for spinning machine [J]. The International Journal of Advanced Manufacturing Technology, 2013, 68(1/2/3/4): 217-226.

[1] 何雪军, 王进, 陆国栋, 刘振宇, 陈立, 金晶. 基于三角网切片及碰撞检测的工业机器人三维头像雕刻[J]. 浙江大学学报(工学版), 2017, 51(6): 1104-1110.
[2] 王自立, 张树有, 裘乐淼. 基于可信度区间的注塑装备设计塑化能耗分析[J]. 浙江大学学报(工学版), 2017, 51(2): 328-335.
[3] 曲巍崴, 卢贤刚, 杨迪. 预连接工艺对壁板动态特性的影响分析[J]. 浙江大学学报(工学版), 2017, 51(2): 336-343.
[4] 罗仕鉴, 董烨楠. 面向创意设计的器物知识分类研究[J]. 浙江大学学报(工学版), 2017, 51(1): 113-123.
[5] 王越, 苏宏业, 邵寒山, 卢山,谢磊. 需求与公用工程不确定的生产计划与调度集成[J]. 浙江大学学报(工学版), 2017, 51(1): 57-67.
[6] 文贤鹤, 周晓军, 杨辰龙. 云制造模式车辆试验服务平台构建方法[J]. 浙江大学学报(工学版), 2016, 50(12): 2254-2261.
[7] 何雪军,王进,陆国栋,陈立. 岛中含湖型截面的环切刀轨连接方法[J]. 浙江大学学报(工学版), 2016, 50(9): 1654-1661.
[8] 过海,王进,陆国栋. 金属板坯道次间变进给率普通旋压方法[J]. 浙江大学学报(工学版), 2016, 50(9): 1646-1653.
[9] 曲巍崴, 唐伟, 毕运波, 李少波, 罗水均. 避免强迫装配和提升效率的预连接工艺规划[J]. 浙江大学学报(工学版), 2016, 50(8): 1561-1569.
[10] 刘征宏, 谢庆生, 李少波, 林丽. 基于潜在语义分析和感性工学的用户需求匹配[J]. 浙江大学学报(工学版), 2016, 50(2): 224-233.
[11] 毕运波,李夏,严伟苗,沈立恒, 朱宇,方伟. 面向螺旋铣制孔过程的压脚压紧力优化[J]. 浙江大学学报(工学版), 2016, 50(1): 102-110.
[12] 吴海曦,余忠华,张浩,杨振生,WANG Yan. 面向熔融沉积成型的3D打印机故障声发射监控方法[J]. 浙江大学学报(工学版), 2016, 50(1): 78-84.
[13] 毕运波,吴原骅,朱伟东,沈立恒,黄稳,朱宇. 飞机叠层结构预联接工艺优化[J]. 浙江大学学报(工学版), 2015, 49(11): 2040-2046.
[14] 董辉跃,朱灵盛, 章明, 李少波,罗水均. 飞机蒙皮切边的螺旋铣削方法[J]. 浙江大学学报(工学版), 2015, 49(11): 2033-2039.
[15] 冯刚,付国强,孙磊,傅建中. 多轴数控机床转台几何误差辨识新方法[J]. 浙江大学学报(工学版), 2015, 49(11): 2083-2091.