Please wait a minute...
浙江大学学报(工学版)
能源与机械工程     
大范围着速下混凝土靶抗冲击试验研究综述
程怡豪1, 王明洋1,2, 施存程1,3, 李浪1, 孙敖4
1. 解放军理工大学 爆炸冲击防灾减灾国家重点实验室,江苏 南京 210007;2. 南京理工大学 机械工程学院,江苏 南京 210094;3. 第二炮兵指挥学院,湖北 武汉 430012;4. 总参工程兵科研三所,河南 洛阳 471023
Review of experimental investigation of concrete target to resist missile impact in large velocity range
CHENG Yi-hao1, WANG Ming-yang1,2, SHI Cun-cheng1,3, LI Lang1, SUN Ao4
1. State Key Laboratory of Disaster Prevention and Mitigation of Explosive and Impact, PLA University of Science and Technology, Nanjing 210007, China; 2. School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; 3. The Second Artillery Command College, Wuhan 430012, China; 4. The Third Research Institute of Engineering Corps, General Staff of PLA, Luoyang 471023, China
 全文: PDF(1675 KB)   HTML
摘要:

为了评估混凝土材料的抗冲击侵彻性能,基于既有的试验结果在4个冲击速度区间内围绕混凝土靶的破坏特点及若干要素对靶体行为的影响规律展开论述. 总结2种主要的速度分区思路,建议综合考虑材料动力学响应特征和表观侵彻现象的4个速度区间,按照从低速到超高速的顺序展开论述:在低速区间内(撞击速度不超过40 m/s)简要介绍梁、柱、板壳的破坏模式,中速区间内(撞击速度为40~1 000 m/s)论述弹靶相对尺寸、粗骨料、单轴抗压强度和钢筋对混凝土厚靶侵彻效应的影响,高速区间内(撞击速度为1.0~2.0 km/s)描述半流体转变速度和成坑效应,超高速区间内(撞击速度超过2 km/s)描述密度效应占主导的流体侵彻行为. 对未来混凝土材料侵彻效应的研究提出若干建议.

Abstract:

Impact experimental results for concrete targets and the factors influencing target behaviors in four velocity ranges were presented in order to evaluate the impact resistance of concrete. Two types of velocity partition means were concluded and four velocity ranges were suggested based on material dynamic responses and apparent penetration behaviors. The experimental studies were reviewed from low velocity to hypervelocity. In low velocity range(impact velocity within 40 m/s), failure modes of beams, columns, slabs and shells were briefly summarized. In medium velocity range(impact velocity between 40 m/s and 1 km/s), the effects of relative diameter of missile to target, coarse aggregate, uniaxial compressive strength and steel bar on the thick target penetration were discussed. In high velocity range(impact velocity between 1 km/s and 2 km/s), the semi-hydrodynamic transition velocity and cratering effects were introduced. In hypervelocity range (impact velocity over 2 km/s), the density-dominant hydrodynamic penetration phenomena were described. Some research proposals on concrete penetration were given for the further study.

出版日期: 2015-04-01
:  O 385  
基金资助:

教育部长江学者和创新团队发展计划资助项目(IRT13071 );国家重点实验室开放基金资助项目(DPMEIKF201301)

通讯作者: 王明洋,男,教授     E-mail: wmyrf@163.com
作者简介: 程怡豪(1986—),男,博士生,从事防护工程的研究. E-mail: 05105432@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

程怡豪, 王明洋, 施存程, 李浪, 孙敖. 大范围着速下混凝土靶抗冲击试验研究综述[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2015.04.002.

CHENG Yi-hao, WANG Ming-yang, SHI Cun-cheng, LI Lang, SUN Ao. Review of experimental investigation of concrete target to resist missile impact in large velocity range. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2015.04.002.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2015.04.002        http://www.zjujournals.com/eng/CN/Y2015/V49/I4/616

[1] KENNEDY R P. A review of procedures for the analysis and design of concrete structures to resist missile impact effects [J]. Nuclear Engineering and Design, 1976, 37(2): 183-203.
[2] CHABAI A J. Terra dynamic technology: theory and experiment [M]. Albuquerque: Sandia National Laboratories, 1977.
[3] FORRESTAL M J. Penetration of concrete target [M]. Albuquerque: Sandia National Laboratories, 1992.
[4] LI Q M, REID S R, WEN H M, et al. Local impact effects of hard missiles on concrete targets [J]. International Journal of Impact Engineering, 2005, 32(1): 224-284.
[5] WEIRAUCH G. Das verhalfen von kupfersufen derm auftreffen auf verschiedene werkstuffe mit geschwindigkeiten zwischen 50 m/s and 1 650 m/s [D]. Karlsruhe: University of Karlsruhe, 1971.
[6] JOHNSON W. Impact strength of materials [M]. London: Edward Arnold, 1983.
[7] БЕЛОВ Н Н, КОПАНИЦА Д Г, КУМПЯК О Г, et al. Расчет железобетонных конструкций на взрывные и ударные нагрузки [M]. Томск: Нортхэмлтон, 2004.
[8] 经福谦.实验物态方程导引[M].2版.北京:科学出版社,1999: 61-66.
[9] LUNDGREN R G. High velocity penetrators [R]. Monterey: American Institute of Aeronautics and Astronautics Missile Science, 1994.
[10] CHEN X W, LI Q M. Transition from nondeformable projectile penetration to semihydrodynamic penetration [J]. Journal of Engineering Mechanics, 2004, 130(1): 123-127.
[11] 楼建锋.侵彻半无限厚靶的理论模型与数值模拟研究[D].绵阳:中国工程物理研究院,2012.
LOU Jian-feng. Theoretical model and numerical study on penetrating into semi-infinite targets [D]. Mianyang: China Academy of Engineering Physics, 2012.
[12] TATE A. Further results in the theory of long rod penetration [J]. Journal of the Mechanics and Physics of Solids, 1969, 17(3): 141-150.
[13] WEN H M, LAN B. Analytical models for the penetration of semi-infinite targets by rigid, deformable and erosive long rods [J]. Acta Mechanica Sinica, 2010, 26(4): 573-583.
[14] BURNS N H, RIPPERGER E A, VEERAIAH C. Dynamic behavior and resistance of prestressed split beams [R]. Port Hueneme: Naval Civil Engineering Laboratory, 1972: 26-31.
[15] ПОПОВ Н Н, РАСТРОГУЕВ Б С, ЗАБЕГАЕВ А В. Расчет констртукций на динамические специальные нагрузки [M]. Москва: Высшаяшкола, 1992.
[16] KISHI N, MIKAMI H, MATSUOKA K G, et al. Impact behavior of shear-failure-type RC beams without shear rebar [J]. International Journal of Impact Engineering, 2002, 27(9): 955-968.
[17] MAY I M, CHEN Y. An experimental investigation of the high-mass low-velocity impact behavior of reinforced concrete members [C]∥ Proceedings of the 2nd International Conference on Design and Analysis of Protective Structures. Singapore: [s. n.], 2006: 417-430.
[18] FUJIKAKE K, LI B, SOEUN S. Impact response of reinforced concrete beam and its analytical evaluation [J]. Journal of Structural Engineering, 2009, 135(8): 938-950.
[19] 孟一. 冲击荷载作用下钢筋混凝土梁的试验及数值模拟研究[D]. 长沙:湖南大学,2012.
MENG Yi. Experiment and numerical simulation study on reinforced concrete beam under impact loading [D]. Changsha: Hunan University, 2012.
[20] 曾翔,许斌.无腹筋钢筋混凝土梁抗冲击行为试验研究[J].土木工程学报,2012, 45(9): 63-73.
ZENG Xiang, XU Bin. Experimental study on the impact-resistant behavior of RC beams without shear-resistant rebar [J]. China Civil Engineering Journal, 2012, 45(9): 63-73.
[21] 许斌,曾翔.冲击荷载作用下钢筋混凝土梁性能试验研究[J].土木工程学报, 2014, 47(2): 41-61.
XU Bin, ZENG Xiang. Experimental study on the behaviors of reinforced concrete beams under impact loadings [J]. China Civil Engineering Journal, 2014, 47(2): 41-61.
[22] 李砚召,王肖钧,郭晓辉,等.部分预应力混凝土梁抗冲击性能试验研究[J].爆炸与冲击, 2006, 26(3): 256-261.
LI Yan-zhao, WANG Xiao-jun, GUO Xiao-hui, et al. Experimental study on anti-impact properties of a partially prestressed concrete beam [J]. Explosion and Shock Waves, 2006, 26(3): 256-261.
[23] LIFSHITZ J M, GOV F, GANDELSMAN M. Instrumented low-velocity impact of CFRP beams [J]. International Journal of Impact Engineering, 1995, 16(2): 201-215.
[24] MILI F, NECIB B. Impact behavior of cross-ply laminated composite plates under low velocities [J]. Composite Structures, 2001, 51(3): 237-244.
[25] ROH J H, KIM J H. Hybrid smart composite plate under low velocity impact [J]. Composite Structures, 2002, 56(2): 175-182.
[26] TANG T, SAADATMANESH H. Behavior of concrete beams strengthened with fiber-reinforced polymer laminates under impact loading [J]. Journal of Composites for Construction, 2003, 7(3): 209-218.
[27] SOLEIMANI S M. Sprayed glass fiber reinforced polymers in shear strengthening and enhancement of impact resistance of reinforced concrete beams [D]. Vancouver: The University of British Columbia, 2006.
[28] 任晓虎,霍静思,陈柏生.火灾下钢管混凝土梁落锤冲击试验研究[J].振动与冲击, 2012, 31(20): 110-115.
REN Xiao-hu, HUO Jing-si, CHEN Bai-sheng. Anti-impact behavior of concrete-filled steel tubular beams in fire [J]. Journal of Vibration and Shock, 2012, 31(20): 110-115.
[29] 钱七虎,王明洋.高等防护结构计算理论[M].南京:江苏科学技术出版社,2009.
[30] ZINEDDIN M. Simulation of reinforced concrete slab behavior under impact loading [C]∥ Proceeding of AEI Conference on Building Intergation Solutions. Denver: [s. n ], 2008: 19.
[31] FORRESTAL M J, FREW D J, HANCHAK S J, et al. Penetration of grout and concrete targets with ogive-nose steel projectiles [J]. International Journal of Impact Engineering, 1996, 18(5): 465-476.
[32] 何翔,徐翔云,孙桂娟,等.弹体高速侵彻混凝土的效应实验[J].爆炸与冲击, 2010, 30(1): 16.
HE Xiang, XU Xiang-yun, SUN Gui-juan, et al. Experimental investigation on projectiles’ high-velocity penetration into concrete target [J]. Explosion and Shock Waves, 2010,30(1):16.
[33] 梁斌,陈小伟,姬永强,等.先进钻地弹概念弹的次口径高速深侵彻实验研究[J].爆炸与冲击, 2008, 28(1): 19.
LIANG Bin, CHEN Xiao-wei, JI Yong-qiang, et al. Experimental study on deep penetration of reduced-scale advanced earth penetrating weapon [J]. Explosion and Shock Waves, 2008, 28(1): 19.
[34] CANFIELD J A, CLATOR I G. Development of a scaling law and techniques to investigate penetration in concrete [R]. Dahlgren: Naval Weapons Laboratory, 1966.
[35] NASH P T, ZABEL P H, WENZEL A B. Penetration studies into concrete and granite [C]∥ Proceeding of the ASCE/ASME Mechanics Conference. Albuquerque: ASME, 1985: 175-181.
[36] CARGILE J D, TIDWELL L E. Penetration of a subscale semi-armor-piercing projectile into conventional-strength and high-strength concrete targets [R]. Vicksburg: U. S. Army Corps of Engineers, Waterways Experimental Station, 1993.
[37] FORRESTAL M J, LUK V K, WATTS H A. Penetration of reinforced concrete with ogive-nose penetrators [J]. International Journal of Solids and Structures, 1988, 24(1): 77-87.
[38] FREW D J, FORRESTAL M J, CARGILE J D. The effect of concrete target diameter on projectile deceleration and penetration depth [J]. International Journal of Impact Engineering, 2006, 32(10): 1584-1594.
[39] NASH P T, BLAYLOCK N W, SPIRES S M, et al. Concrete penetration data base and evaluation of predictive equation [R]. San Antonio: Southwest Research Institute, 1986.
[40] DANCYGIER A N, YANKELEVSKY D Z, JAEGERMANN C. Response of high performance concrete plates to impact of non-deforming projectiles [J]. International Journal of Impact Engineering, 2007, 34(11): 1768-1779.
[41] 张伟,慕忠成,肖新科.骨料粒径对混凝土靶抗高速破片侵彻影响的试验研究[J]兵工学报,2012,33(8):1009-1015.
ZHANG Wei, MU Zhong-cheng, XIAO Xin-ke. Experimental study on effect of aggregate size to anti-penetration ability of concrete targets subjected to high-velocity fragment [J]. Acta Armamentarii, 2012,33 (8):1009-1015.
[42] ZHANG M H, SHIM V P W, LU G, et al. Resistance of high-strength concrete to projectile impact [J]. International Journal of Impact Engineering, 2005, 31(7): 825-841.
[43] WERNER S, THIENEL K C, KUSTERMANN A. Study of fractured surfaces of concrete caused by projectile impact [J]. International Journal of Impact Engineering, 2013, 52(2): 23-27.
[44] 何丽灵,陈小伟,范瑛.先进钻地弹高速侵彻实验中质量磨蚀侵蚀金相分析[J].爆炸与冲击,2012, 32(5): 515-522.
HE Li-ling, CHEN Xiao-wei, FAN Ying. Metallographic observation of reduced-scale advanced EPW after high-speed penetration [J]. Explosion and Shock Waves, 2012, 32(5): 515-522.
[45] FREW D J, HANCHAK S J, GREEN M L, et al. Penetration of concrete targets with ogive-nose steel rods [J]. International Journal of Impact Engineering, 1998, 21(6): 489-497.
[46] O’NEIL E F, NEELEY B D, CARGILE J D. Tensile properties of very-high-strength concrete for penetration-resistant structures [J]. Shock and Vibration, 1999, 6(5): 237-245.
[47] LANGHEIM H, PAHL H, SCHMONLINSKE E. Subscale penetration tests with bombs and advanced penetrators against hardened structures [C]∥ Proceeding of the 6th International Symposium on Interaction of Nonnuclear Munitions with Structures. Panama: [s. n.], 1993: 33-38.
[48] DARRIGADE A, BUZAUD E. High performance concrete: a numerical and experimental study [C]∥ Proceedings of the 18th International Symposium on Ballistic. San Antonio: [s. n.], 1999: 845-852.
[49] 吴飚,唐乾刚,刘瑞朝,等.高强混凝土抗侵彻性能试验研究[J].防护工程,2004, 26(6):59.
WU Biao, TANG Qian-gang, LIU Rui-chao, et al. Experimental study on penetration-resistance of high strength concrete [J]. Protective Engineering, 2004, 26(6): 59.
[50] KAMAL I M, ELTEHEWY E M. Projectile penetration of reinforced concrete blocks: test and analysis [J]. Theoretical and Applied Fracture Mechanics, 2012, 60(1): 31-37.
[51] HANCHAK S J, FORRESTAL M J, YOUNG E R, et al. Perforation of concrete slabs with 48 MPa (7 ksi) and 140 MPa (20 ksi) unconfined compressive strengths [J]. International Journal of Impact Engineering, 1992, 12(1): 17.
[52] 马爱娥,黄风雷.弹体斜侵彻钢筋混凝土的试验研究[J].北京理工大学学报, 2007, 27(6): 482-486.
MA Ai-e, HUANG Feng-lei. Experimental research on oblique penetration into reinforced concrete [J]. Transactions of Beijing Institute of Technology, 2007, 27(6): 482-486.
[53] MILLER C W, MCKAY W L. Perforation of concrete targets by slender metal rods [C]∥ Proceeding of the 6th Ballistics Symposium. Orlando: [s. n. ], 1981: 502-509.
[54] MU Z C, ZHANG W. An investigation on mass loss of ogival projectiles penetrating concrete targets [J].International Journal of Impact Engineering, 2011, 38(8): 770-778.
[55] 王可慧,耿宝刚,初哲,等.弹体高速侵彻钢筋混凝土靶的结构变形及质量损失的实验研究[J]. 高压物理学报, 2014, 28(1): 61-68.
WANG Ke-hui, GENG Bao-gang, CHU Zhe, et al. Experimental studies on structural response and mass loss of high-velocity projectiles penetrating into reinforced concrete targets [J]. Chinese Journal of High Pressure Physics, 2014, 28(1): 61-68.
[56] YOUNG C W. Penetration equations[R]. Albuquerque: Sandia National Labs., 1997.
[57] 汪斌,曹仁义,谭多望.大质量高速动能弹侵彻钢筋混凝土的实验研究[J].爆炸与冲击, 2013, 33(1): 98-102.
WANG Bin, CAO Ren-yi, TAN Duo-wang. Experimental study on penetration of concrete by a high-speed penetrator with large mass [J]. Explosion and Shock Waves, 2013, 33(1): 98-102.
[58] GOLD V M, VRADIS G C, PEARSON J C. Concrete penetration by eroding projectiles: experiments and analysis [J]. Journal of Engineering Mechanics, 1996, 122(2): 145-152.
[59] DAWSON A, BLESS S, LEVINSON S, et al. Hypervelocity penetration of concrete [J]. International Journal of Impact Engineering, 2008, 35(12): 1484-1489.
[60] 赵晓宁.高速弹体对混凝土侵彻效应研究[D].南京:南京理工大学, 2011.
ZHAO Xiao-ning. Study on the effect of projectiles high-velocity normal penetrating into concrete target [D]. Nanjing: Nanjing University of Science and Technology, 2011.
[61] ORPHAL D L. Explosions and impacts [J]. International Journal of Impact Engineering, 2006, 33(1): 496-545.
[62] ROHANI B, COLTHARP D R, MCANEY C C, et al. Effectiveness of rock-rubble/boulder screen for degrading the penetration of shaped charge jets miscellaneous paper [R]. Vicksburg: U. S. Army Corps of Engineers, Waterways Experimental Station, 1982.
[63] ROSNER H. Optimization of shaped charge against concrete targets [C]∥ Proceedings of the 6th International Symposium on Interaction of Nonnuclear Munitions with Structures. Panama: [s. n.], 1993: 273-276.
[64] KRAUSE D R, WUERER J E, OEDING R G. Ballistic range/guided rail track test conductor program [R]. Costa Mesa: Spectron Development Laboratories, 1981.
[65] XIAO Q Q, HUANG Z X, ZHU C S, et al. Calculation of depth and crater diameter for the supersonic penetration of shaped charge jet into concrete [J]. Propellants, Explosives, Pyrotechnics, 2013, 38(2): 224-231.

No related articles found!