Please wait a minute...
浙江大学学报(工学版)
化学工程     
双组分颗粒振动体系中的能量传递与耗散
张富翁1,3, 王立1,2, 刘传平1,2
1.北京科技大学 机械工程学院,北京 100083; 2.北京科技大学 北京高校节能与环保工程研究中心,北京 100083; 3.攀枝花市经济和信息化委员会综合处,四川 攀枝花 617000
Energy transfer and dissipation in a binary granular mixture under vibration
ZHANG Fu-weng1,3,WANG Li1,2,LIU Chuan-ping1,2
1. School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China;2. Beijing Engineering Research Center for Energy Saving and Environmental Protection, University of Science and Technology Beijing, Beijing 100083, China;3. Comprehensive Department, Economic and Information Commission of Panzhihua, Panzhihua 617000, China
 全文: PDF(2318 KB)   HTML
摘要:

为研究颗粒床层中的能量传递及耗散规律,基于离散元(DEM)法模拟一维垂直振动床内组分颗粒的受激运动,得到单组分和双组分颗粒的能量分布规律.结果表明:不同振动参数(振幅和频率)下颗粒体系的能量传递与耗散规律存在明显的差别,高频振动下颗粒体系的动能和耗散随着床层高度的增加而减小,低频振动下则呈现与之相反的变化趋势;对于双组分颗粒混合物床层,系统的总动能受振动参数和床内颗粒分布形式的影响;低频率低振幅时,“反巴西果”分布的床层总动能更低,高频率条件下的“巴西果”分布时床层总动能更低.

Abstract:

Energy transfer and dissipation in a vibrated granular bed was studied by DEM simulations, and the energy profile in the granular bed of the same size and binary mixture were obtained. The results show that the energy transfer and dissipation in the granular bed are influenced by the vibration parameters (vibration amplitude and frequency). Along the bed height, the kinetic energy of grains decreases at high vibration frequency, while it increases at low vibration frequency. For the granular bed constituted by a binary mixture, the total kinetic energy is influenced by the grain distribution of  mixture in bed beside frequency and amplitude. For  low frequency  amplitude vibrations, the granular bed with “Reverse Brazil Nut” distribution has lower energy. While, for  high frequency vibration, the energy of  bed with “Brazil Nut” distribution is much lower.

出版日期: 2015-08-28
:  TQ 028.9  
基金资助:

国家自然科学基金资助项目(51076010);中央高校基本科研业务费专项资金资助项目(No. FRF-SD-12-013A);国家重点基础研究发展计划资助项目(2012CB720406)

通讯作者: 王立,男,教授     E-mail: liwang@ustb.edu.cn
作者简介: 张富翁(1986-),男,博士生,从事气固两相流研究. E-mail: zhangfuweng1986@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

张富翁, 王立, 刘传平. 双组分颗粒振动体系中的能量传递与耗散[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2015.03.024.

ZHANG Fu-weng,WANG Li,LIU Chuan-ping. Energy transfer and dissipation in a binary granular mixture under vibration. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2015.03.024.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2015.03.024        http://www.zjujournals.com/eng/CN/Y2015/V49/I3/571

[1] JAEGER H M, NAGEL S R, BEHRINGER R P. Granular solids, liquids, and gases[J]. Reviews of Modern Physics, 1996, 68: 1259-1273.
[2] KUANG S B, YU A B, ZOU Z S. Computational study of flow regimes in vertical pneumatic conveying[J]. Industrial and Engineering Chemistry Research, 2009, 48: 6846-6858.
[3] 鲍德松, 张训生. 颗粒物质与颗粒流[J]. 浙江大学学报:理学版, 2003, 30(5): 514-517.
BAO De-song, ZHANG Xun-sheng. Granular matter and granular flow[J]. Journal of Zhejiang University: Science Edition, 2003, 30(5): 514-517.
[4] 陆坤权, 刘寄星.颗粒物质[J]. 物理, 2004, 33(9): 629-635.
LU Kun-quan, LIU Ji-xing. Granular matter[J]. Physics, 2004, 33(9): 629-635.
[5] 刘伟伟, 卢春喜, 范怡平, 等. 气固流化床中双组分混合颗粒的流态化特性[J]. 化工学报, 2008, 59(8): 1971-1978.
LIU Wei-wei, LU Chun-xi, FAN Yi-ping, et al. Flow behavior of binary mixture particles in gas-solid fluidized beds[J]. Journal of Chemical Industry and Engineering, 2008, 59(8): 1971-1978.
[6] 张树青, 卢春喜, 时铭显, 等. 气固流化床中大差异双组份颗粒分级特性的实验研究[J]. 高校化学工程学报, 2004, 55(10): 1581-1592.
ZHANG Shu-qing, LU Chun-xi, SHI Ming-xian, et al. Segregation of binary particle with significant size difference in gas-solid fluidized beds[J].Journal of Chemical Engineering of Chinese Universities, 2004, 55(10): 1581-1592.
[7] 江茂强, 赵永志, 郑津洋. 非等密度颗粒气固流化床的微观尺度模拟与分析[J]. 浙江大学学报:工学版, 2009, 43(9): 1703-1708.
JIANG Mao-qiang, ZHAO Yong-zhi, ZHENG Jin-yang. Micro-scale simulation and analysis of gas-solid fluidized bed with multi-density distribution of particles[J]. Journal of Zhejiang University: Engineering Science, 2009, 43(9): 1703-1708.
[8] DEEN N G, WILLEM G, SANDER G, et al. Numerical analysis of solids mixing in pressurized fluidized beds[J]. Industrial and Engineering Chemistry Research, 2010, 49: 5246-5253.
[9] KHAIN E, MEERSON B. Onset of thermal convection in a horizontal layer of granular gas [J]. Physical Review E, 2003, 67: 021306.
[10] HSIAU S S, WU M H, CHEN C H. Arching phenomena in a vibrated granular bed [J]. Powder Technology, 1998, 99: 185-193.
[11] AOKI K M, AKIYAMA T. Spontaneous wave pattern formation in vibrated granular materials[J]. Physical Review Letters, 1996, 77: 4166-4419.
[12] YUAN X, ZHENG N, SHI Q, et al. Segregation in mixtures of granular chains and spherical grains under vertical vibration[J]. Physical Review E, 2013, 87: 042203.
[13] ROSATO A D, STRANDBURG K J, PRINZ F, et al. Why the Brazil nuts are on top: Size segregation of particulate matter by shaking [J]. Physical Review Letters, 1987, 58: 1038-1040.
[14] HSIAU S S, CHEN W. Density effect of binary mixtures on the segregation process in a vertical shaker[J]. Advanced Powder Technology, 2002, 13: 301-315.
[15] SHINBORT T, MUZZIO F J. Reverse buoyancy in shaken granular beds[J]. Physical Review Letters, 1998, 81: 4365-4368.
[16] LIU C P, WANG L, WU P, et al. Effects of gas flow on granular size separation[J]. Physical Review Letters, 2010, 104: 188001.
[17] ROSATO A D, BLACKMORE D L, ZHANG N, et al. A perspective on vibration-induced size segregation of granular materials[J]. Chemical Engineering Science, 2002, 57: 265-275.
[18] LIU C P, WANG L, WU P, et al. Size distribution in gas vibration bed and its application on grain drying[J]. Powder Technology, 2012, 221:192-198.
[19] 林建忠, 游振江, 石兴. 混合层中柱状粒子运动的研究[J]. 工程热物理学报, 2003, 24(6): 972-975.
LIN Jian-zhong, YOU Zhen-jiang, SHI Xing. Research on the motion of cylindrical particle in mixing layer [J]. Journal of Engineering Thermophysics, 2003, 24(6): 972-975.
[20] 张国华, 孙其诚, 黄芳芳, 等. 摩擦颗粒体系各向同性压缩过程中的堵塞行为[J]. 物理学报, 2011, 60(12): 124502.
ZhANG Guo-hua, SUN Qi-cheng, HUANG Fang-fang, et al. Jamming phenomena of a two-dimensional frictional granular system under isotropic confining [J]. Acta Physica Sinica, 2011, 60(12): 124502.
[21] 吴锦坤, 罗坤, 胡桂林, 等. 鼓泡流化床流动特性的直接数值模拟[J]. 浙江大学学报:工学版, 2007, 41(3): 504-508.
WU Jin-kun, LUO Kun, HU Gui-lin, et al. Direct particle simulation of flow characteristics in bubbling fluidized bed [J]. Journal of Zhejiang University: Engineering Science, 2007, 41(3): 504-508.
[22] 赵永志, 程易, 金涌. 提升管与下行床颗粒团聚行为的离散颗粒模拟[J]. 化工学报, 2007, 58(1): 44-53.
ZHAO Yong-zhi, CHENG Yi, JIN Yong. CFD-DEM simulation of clustering phenomena in riser and downer[J]. Journal of Chemical Industry and Engineering, 2007, 58(1): 44-53.
[23] WILDMAN R D, HUNTLEY J M. Scaling exponents for energy transport and dissipation in binary vibro-fluidized granular beds[J]. Physics of Fluids, 2003, 15: 3090-3098.
[24] NARAYAN O, RAMASWAMY S. Anomalous heat conduction in one-dimensional momentum-conserving systems[J]. Physical Review Letters, 2002, 89: 200601.
[25] DHAR A, SAITO K. Heat conduction in the disordered Fermi-Pasta-Ulam chain[J]. Physical Review E, 2008, 78: 061136.
[26] MINDLIN R D. Compliance of elastic bodies in contact [J]. Journal of applied mechanics, 1949, 16: 259-268.
[27] YANAGIDA T, MATCHETT A J, COULTHARD J M. Dissipation energy of powder beds subject to vibration[J]. Chemical Engineering Research and Design, 2001, 79: 655-662.
[28] 彭政, 蒋亦民, 刘锐, 等. 垂直振动激发下颗粒物质的能量耗散[J]. 物理学报, 2013, 62(2): 024502.
PENG Zheng, JIANG Yi-ming, LIU Rui, et al. Energy dissipation of a granular system under vertical vibration [J]. Acta Physica Sinica, 2013, 62(2): 024502.

No related articles found!