Please wait a minute...
浙江大学学报(工学版)
交通运输     
水下自主机器人接驳碰撞过程分析
史剑光,李德骏,杨灿军,蔡业豹
浙江大学 流体动力与机电系统国家重点实验室,浙江 杭州 310027
Impact analysis during docking process of autonomous underwater vehicle
SHI Jian-guang, LI De-jun, YANG Can-jun, CAI Ye-bao
State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University,Hangzhou 310027,China
 全文: PDF(2211 KB)   HTML
摘要:

为了保证水下自主航行器(AUV)接驳过程的顺利进行,对一种新型喇叭状开口型接驳系统的接驳碰撞过程进行分析,从而为接驳系统的结构设计和参数选择提供依据.在详细分析AUV的水下受力状况和碰撞参数的基础上,在动力学分析软件ADAMS中建立仿真模型,并探讨喇叭口的形状、喇叭口和AUV导流罩的材质、AUV的推进力以及AUV的初始位置对接驳过程的影响.以顺利进入喇叭口、碰撞过程的最大碰撞力和从碰撞开始到接驳完成所用时间为衡量标准,进行多次仿真,发现:较小的喇叭口开口角度刚度小、阻尼系数较大、表面光滑的材质以及较小的偏距均有利于接驳过程的顺利进行,而推进力的变化对接驳过程的影响较小.通过比较AUV在碰撞开始前的不同初始位置和偏角下碰撞过程初始姿态下的试验结果和仿真结果,验证仿真模型的有效性.

Abstract:

Impact characteristics during the docking process of a new cone-type autonomous underwater vehicles (AUV) docking system was analyzed in order to ensure the successful docking of autonomous underwater vehicle. Results helped to support docking system design and parameter selection. A simulation model was built in the dynamic analysis software ADAMS (automatic dynamic analysis of mechanical systems) based on the hydrodynamic characteristics of  AUV and impact parameters. Four factors that were supposed to impact on the docking process were studied, including the shape of  cone entrance, the materials of  cone and  AUV nose, the propulsion force of  AUV  and the initial attitude of  AUV. The quality of  docking process is evaluated by  AUV entering the cone successfully, the maximum impact force during the process, and time spent from the beginning of impact to the finish of docking. It was found that small opening angle of the cone, small stiffness, big damping coefficient,  good smoothness of  materials and small cross-track deviation can contribute to successful docking process, whereas propulsion force has relatively small effect on the process. The simulation model was validated by comparing the experiment results and the simulation results under different positions and angles of AUV before  impact initiates.

出版日期: 2015-08-28
:  TH 69  
基金资助:

国家“863”高科技研究发展计划资助项目(2013AA09A414); 国家自然科学基金创新研究群体科学基金资助项目(51221004);浙江大学“985工程”海洋学科建设资助项目(2012HY003A)

通讯作者: 杨灿军,男,教授     E-mail: ycj@zju.edu.cn
作者简介: 史剑光(1986-),男,博士生,从事深海机电设备和非接触电能传输设备研究. E-mail: sjg305@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

史剑光,李德骏,杨灿军,蔡业豹. 水下自主机器人接驳碰撞过程分析[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2015.03.015.

SHI Jian-guang, LI De-jun, YANG Can-jun, CAI Ye-bao. Impact analysis during docking process of autonomous underwater vehicle. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2015.03.015.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2015.03.015        http://www.zjujournals.com/eng/CN/Y2015/V49/I3/497

[1] PODDER T, SIBENAC M, BELLINGHAM J. AUV docking system for sustainable science missions[C]∥Proceedings of IEEE International Conference on Robotics and Automation. New Jersey: IEEE, 2004,5: 4478-4484.
[2] 燕奎臣,吴利红. AUV水下对接关键技术研究 [J]. 机器人, 2007, 29(3): 267-273.
YAN Kui-chen, WU Li-hong. A survey on the key technologies for underwater AUV docking [J]. Robot, 2007, 29(3): 267-273.
[3] MCEWEN R S, HOBSON B W, MCBRIDE L, et al. Docking control system for a 54-cm-diameter (21-in) AUV [J]. IEEE Journal of Oceanic Engineering, 2008, 33(4): 550-562.
[4] SINGH H, BELLINGHAM J G, HOVER F, et al. Docking for an autonomous ocean sampling network [J]. IEEE Journal of Oceanic Engineering, 2001, 26(4): 498-514.
[5] PYLE D, GRANGER R, GEOGHEGAN B, et al. Leveraging a large UUV platform with a docking station to enable forward basing and persistence for light weight AUVs [C]∥OCEANS, New Jersey: IEEE, 2012:18.
[6] 潘光,黄明明,保维,等. AUV 回收技术现状及发展趋势[J]. 鱼雷技术,2008, 16(6): 10-14.
PAN Guang, HUANG Ming-ming, SONG Bao-wei, et al. Current situation and development trend of AUV recovery technology[J]. Torpedo Technology, 2008, 16(6): 10-14.
[7] 张竺英,王棣棠,刘大路. 自治式水下机器人回收系统的研究与设计[J]. 机器人, 1995, 17(6): 348-351.
ZHANG Zhu-ying, WANG Di-tang, LIU Da-lu. The researching and designing of the recovering system for autonomous underwater vehicles[J]. Robtics, 1995, 17(6): 348-351.
[8] CHEN Y, YANG C J, LI D J, et al. Design and application of a junction box for cabled ocean observatories[J]. Marine Technology Society Journal, 2012, 46(3): 50-63.
[9] BARNES C R, BEST M M, ZIELINSKI A. The NEPTUNE Canada regional cabled ocean observatory[J]. Sea Technology, 2008, 49(7) : 10-14.
[10] STOKEY R, ALLEN B, AUSTIN T, et al. Enabling technologies for REMUS docking: an integral component of an autonomous ocean-sampling network[J]. IEEE Journal of Oceanic Engineering, 2001, 26(4): 487-497.
[11] KNEPPER S, NIEMEYER M, GALLETTI R, et al. Eurodocker:  a universal docking downloading recharging system for AUVs[C]∥ OCEANS. New Jersey: IEEE, 2001, 3: 1463-1467.
[12]WANG S, SUN X J, WANG Y H, et al. Dynamic modeling and motion simulation for a winged hybrid-driven underwater glider \[J\]. China Ocean Engineering, 2011, 25(1): 97-112.
[13] 林一. 潜艇耐压结构碰撞响应与强度评估方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2009.
LIN Yi. Research of on collision response and strength assessment method for submersible [D]. Harbin: Harbin Engineering University, 2009.
[14] LANKARANI H M, NIKRAVESH P E. A contact force model with hysteresis damping for impact analysis of multibody systems[J]. Journal of Mechanical Design, 1990, 112: 369.
[15] 周志才,吴新跃,张文群,等. 基于弹簧阻尼模型的碰撞动力学研究[J]. 湖北工业大学学报, 2012, 27(1): 125-128.
ZHOU Zhi-cai, WU Xin-yue, ZHANG Wen-qun,et al. Study on contact dynamics based spring-damper mode[J]. Journal of Hubei University of Technology, 2012, 27(1): 125-128.
[16] 李强. 新型类锥杆式对接机构的碰撞过程分析[D]. 长沙: 国防科学技术大学, 2009.
LI Qiang. Collision analysis of a new quasi probe-cone docking mechanism [D]. Changsha: National University of Defense Technology, 2009.

[1] 李迪, 陈向坚, 续志军, 白越. 模糊神经网络在机载相机稳像中的应用[J]. J4, 2012, 46(8): 1540-1545.