Semi-analytical solution for two-dimensional steady seepage around foundation pit in soil layer with anisotropic permeability" /> 渗透各向异性土层中基坑二维稳定渗流半解析解
Please wait a minute...
浙江大学学报(工学版)
土木工程、建筑工程     
渗透各向异性土层中基坑二维稳定渗流半解析解
黄大中1,2,3, 谢康和1, 应宏伟1
1. 浙江大学 滨海和城市岩土工程研究中心,浙江 杭州 310058;2. 轨道交通勘察设计国家地方联合工程实验室, 天津 300251;3. 铁道第三勘察设计院集团有限公司,天津 300251
Semi-analytical solution for two-dimensional steady seepage around foundation pit in soil layer with anisotropic permeability
HUANG Da-zhong1,2,3, XIE Kang-he1, YING Hong-wei1
1. Research Center of Coastal and Urban Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China; 2. National and Local Joint Engineering Laboratory of Rail Traffic Survey and Design, Tianjin 300251, China; 3.Third Railway Survey and Design Institute Group Corporation, Tianjin 300251, China
 全文: PDF(1437 KB)   HTML
摘要:

通过将基坑周围渗流场分为2个规则的区域,利用Fourier变换推导渗透各向异性土层中基坑二维稳定渗流的半解析解.根据与有限元软件PLAXIS计算结果的比较,验证了半解析解的正确性.基于半解析解,分析渗透各向异性、基坑宽度、挡墙距不透水层顶面距离、基坑内侧水位对挡墙两侧总水头分布的影响以及出逸比降随上述参数的变化情况.分析结果表明:二维渗流下挡墙两侧总水头为曲线分布;随着水平与竖向渗透系数比α、内侧水深d2的增大和基坑半宽度b的减小,挡墙两侧的总水头逐渐增大.随着挡墙距不透水层顶面距离L的增大,挡墙外侧的总水头逐渐减小,挡墙内侧的总水头逐渐增大.随着α、L的增大,b、d2的减小,出逸比降不断增大,基于一维渗流的出逸比降的计算结果偏不安全.

Abstract:

The flow region around the foundation pit in a soil layer with anisotropic permeability was divided into two regular parts. Then a semi-analytical solution for the two-dimensional steady seepage was obtained using Fourier transformation technique. The solution was verified through the comparison with the results obtained from the finite element software PLAXIS. Based on the semi-analytical solution, the effects of the ratio of horizontal permeability to vertical permeability α, the distance between the retaining wall and the impervious boundary L, the water level inside of the foundation pit d2, the half width of the foundation pit b on the distribution of water head along the retaining wall were analyzed, and the variations of exit gradient with the parameters were studied. Results show that the distribution of total water head along the retaining wall is curvilinear under two-dimensional seepage. The total water head becomes larger, as α, d2 becomes larger and b becomes smaller. As L becomes larger, the total water head outside and inside of the retaining wall becomes smaller and larger, respectively. The exit gradient becomes larger with the increase of α, L and the decrease of b, d2. It is unsafe to calculate the exit gradient under the assumption of one-dimensional seepage.

出版日期: 2014-10-01
:  TU 43  
基金资助:

国家自然科学基金面上资助项目(51278453, 51278462).

通讯作者: 应宏伟,男,副教授     E-mail: ice898@zju.edu.cn
作者简介: 黄大中(1987— ),男,博士生,从事地下水运动、抽水引起的地面沉降等的研究.E-mail: huangdz05@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

黄大中, 谢康和, 应宏伟. 渗透各向异性土层中基坑二维稳定渗流半解析解[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2014.10.013.

HUANG Da-zhong, XIE Kang-he, YING Hong-wei.

Semi-analytical solution for two-dimensional steady seepage around foundation pit in soil layer with anisotropic permeability
. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2014.10.013.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2014.10.013        http://www.zjujournals.com/eng/CN/Y2014/V48/I10/1802

[1] 李广信, 刘早云, 温庆博. 渗透对基坑水土压力的影响[J]. 水利学报, 2002, 33(5): 75-80.
LI Guang-xin, LIU Zao-yun, WEN Qing-bo. Influence of seepage on water and earth pressure in foundation pit [J]. Journal of Hydraulic Engineering, 2002, 33(5): 75-80.
[2] 王钊, 邹维列, 李广信. 挡土结构上的土压力和水压力[J]. 岩土力学, 2003, 24(2): 146-150.
WANG Zhao, ZOU Wei-lie, LI Guang-xin. Earth pressure and water pressure on retaining structure [J]. Rock and Soil Mechanics, 2003, 24(2): 146-150.
[3] 罗文林, 张在明. 考虑渗流影响的基坑水压力计算[J]. 工程勘察, 2009, 37(9): 16.
LUO Wen-lin, ZHANG Zai-ming. Computation of water pressure on foundation pit considering groundwater seepage [J]. Geotechnical Investigation and Surveying, 2009, 37(9): 16.
[4] 杨志明, 丁新国. 基坑工程安全事故及原因分析[J]. 地质勘探安全, 1998, 5(1): 10-13.
YANG Zhi-ming, DING Xin-guo. Analysis of causes and safety accidents in excavation engineering [J]. Safety and Environmental Engineering, 1998, 5(1): 10-13.
[5] 上海市行业标准编写组. DG/TJ08-61-2010,基坑工程技术规范[S]. 上海: [s.n.], 2010.
[6] 汤连生, 黄国怡, 杜赢中, 等. 考虑地下水渗流的基坑水土压力计算新图式[J]. 岩土力学, 2004, 25(4): 565-569.
TANG Lian-sheng, HUANG Guo-yi, DU Ying-zhong, et al. A new calculation chart of water-earth pressure on foundation pit considering groundwater seepage [J]. Rock and Soil Mechanics, 2004, 25(4): 565-569.
[7] 骆祖江, 刘昌军, 翟成松, 等. 深基坑降水疏干过程中三维渗流场数值模拟研究[J]. 水文地质工程地质, 2005(5): 48-53.
LU Zu-jiang, LIU Chang-jun, ZHAI Cheng-song, et al. Numerical simulation study on 3-D seepage flow in deep foundation pit’s dewatering and drying [J]. Hydrogeology and Engineering Geology, 2005(5): 48-53.
[8] 姜忻良, 宗金辉. 基坑开挖工程中渗流场的三维有限元分析[J]. 岩土工程学报, 2006, 28(5): 564-568.
JIANG Xin-liang, ZONG Jin-hui. Three-dimensional finite element analysis of seepage fields in foundation pit [J]. Chinese Journal of Geotechnical Engineering, 2006, 28(5): 564-568.
[9] 丛蔼森. 多层地基深基坑的渗流稳定问题探讨[J]. 岩石力学与工程学报, 2009, 28(10): 2018-2023.
CONG Ai-sen. Discussion on several issues of seepage stability of deep foundation pit in multilayered formation [J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(10): 2018-2023.
[10] BANERJEE S, MULESHKOV A. Analytical solution of steady seepage into double-walled cofferdams [J]. Journal of Engineering Mechanics, 1992, 118(3): 525-539.
[11] BERESLAVSKII E N. The flow of ground waters around a Zhukovskii sheet pile [J]. Journal of Applied Mathematics and Mechanics, 2011, 75(2): 210-217.
[12] JIE Y X, JIE G Z, MAO Z Y, et al. Seepage analysis based on boundary-fitted coordinate transformation method [J]. Computers and Geotechnics, 2004, 31(4): 279283.
[13] 介玉新, 揭冠周, 李广信. 用适体坐标变换方法求解渗流[J]. 岩土工程学报, 2004, 26(1): 52-56.
JIE Yu-xin, JIE Guan-zhou, LI Guang-xin. Seepage analysis by boundary-fitted coordinate transformation method [J]. Chinese Journal of Geotechnical Engineering, 2004, 26(1): 52-56.
[1] 谭青, 张逸超, 夏毅敏, 高浩. TBM盘形滚刀切削饱水岩石试验研究[J]. 浙江大学学报(工学版), 2017, 51(5): 914-921.
[2] 李飞, 朱鸿鹄, 张诚成, 施斌. 地基变形光纤光栅监测可行性的试验研究[J]. 浙江大学学报(工学版), 2017, 51(1): 204-211.
[3] 刘海龙, 周家伟, 陈云敏, 李育超, 詹良通. 城市生活垃圾填埋场稳定化评估[J]. 浙江大学学报(工学版), 2016, 50(12): 2336-2342.
[4] 金炜枫,张力友,陈小亮,程泽海. 双向激振液化的离散颗粒-流体耦合模拟方法[J]. 浙江大学学报(工学版), 2016, 50(11): 2135-2142.
[5] 应宏伟, 朱成伟, 龚晓南. 考虑注浆圈作用水下隧道渗流场解析解[J]. 浙江大学学报(工学版), 2016, 50(6): 1018-1023.
[6] 张诚成, 朱鸿鹄, 唐朝生, 施斌. 纤维加筋土界面渐进性破坏模型[J]. 浙江大学学报(工学版), 2015, 49(10): 1952-1959.
[7] 曾晨,孙宏磊,蔡袁强,曹志刚. 饱和土体中衬砌隧道在移动荷载下的动力响应[J]. 浙江大学学报(工学版), 2015, 49(3): 511-521.
[8] 张振营,严立俊. 城市新鲜生活垃圾变形与强度的关联特性[J]. 浙江大学学报(工学版), 2014, 48(11): 1962-1967.
[9] 曾晨,孙宏磊,蔡袁强,曹志刚. 饱和土体中衬砌隧道在移动荷载下的动力响应[J]. 浙江大学学报(工学版), 2014, 48(10): 1-2.
[10] 李大鹏,唐德高,闫凤国,黄牧. 深基坑空间效应机理及考虑其影响的土应力研究[J]. 浙江大学学报(工学版), 2014, 48(9): 1632-1639.
[11] 向天勇, 张正红, 闻敏杰, 单胜道. 饱和土中球形沼气池的动力响应[J]. J4, 2014, 48(2): 242-248.
[12] 闻敏杰, 徐金明, 李强. 饱和黏弹性土中端承桩扭转振动的对比分析[J]. J4, 2013, 47(12): 2146-2152.
[13] 凌道盛,蒋祝金,钟世英,杨建中. 着陆器足垫冲击模拟月壤的数值分析[J]. J4, 2013, 47(7): 1171-1177.
[14] 高华喜, 闻敏杰, 张斌. 具有圆形隧道的准饱和黏弹性土振动响应[J]. J4, 2013, 47(4): 615-621.
[15] 钟世英, 吴晓君, 蔡武军, 凌道盛, 蒋祝金, 王顺玉. 月面软着陆足垫水平拖曳模型试验装置研制[J]. J4, 2013, 47(3): 465-471.