Please wait a minute...
浙江大学学报(工学版)
土木工程     
钢制储液罐的幂次失效模型及地震力折减
杨宏康1,2,高博青1
1.浙江大学 空间结构研究中心,浙江 杭州 310058;2.碧桂园物业发展有限公司,广东 佛山  528312
Power failure model and seismic force reduction of steel liquid storage tank
YANG Hong-kang1,2, GAO Bo-qing1
1.Spatial Structure Research Center, Zhejiang University, Hangzhou 310058, China;2.Country Garden Property Development Limited Company,Foshan 528312,China
 全文: PDF(1260 KB)   HTML
摘要:

为了反映钢制储液罐的渐进失效趋势并合理地量化弹塑性地震力,采用流固耦合系统的单向动力推覆分析,建立反应谱层次的幂次失效模型.根据该模型构建等向强化的广义本构关系,在特定延性下迭代求解地震力折减系数Ry.结果表明,幂次失效模型下的地震力折减系数变异性较小,双线性滞回模型下的地震力折减系数会导致过于保守或偏于危险的地震力折减.选取40条最不利地震动并按场地分类,幂次失效模型下的地震力折减系数的均值略低于目标延性值,更符合长周期结构的等位移准则.GB50341与SH/T3026规定的地震力折减系数高于API650与EN1998-4,建议将地震力折减系数调整至20,应进一步细化边界条件的影响.

Abstract:

A power failure model in response spectrum format was conducted through unidirectional dynamic pushover analysis of fluid-solid coupled system in order to reflect the progressive failure trend of liquid storage tanks and rationally quantify the elastoplastic seismic force. Then generalized constitutive relations with isotropic hardening were established, and seismic force reduction factor Ry was iteratively solved under specific ductility values. Results show that seismic force reduction factor based on power failure model has slight variability, and seismic force reduction factor based on bilinear hysteretic model will cause over-conservative or over-risky seismic force reduction. Forty severest ground motions were selected and classified by site types. The mean values of Ry based on power failure model were slightly lower than target ductility values, which is more in line with equal displacement rule of long-period structures. The specified seismic force reduction factor values in GB50341 and SH/T3026 are higher than those in API650 and EN1998-4. The suggestion is that Ry should be adjusted to 20 and the effects of boundary conditions need to be further refined.

出版日期: 2014-08-04
:  TU 33  
基金资助:

国家自然科学基金资助项目(51178414)

通讯作者: 高博青,男,教授,博导     E-mail: bqgao@zju.edu.cn
作者简介: 杨宏康(1986-),男,博士生,从事钢结构和空间结构的研究. E-mail: hongkangyang@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

杨宏康,高博青. 钢制储液罐的幂次失效模型及地震力折减[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2014.07.009.

YANG Hong-kang, GAO Bo-qing. Power failure model and seismic force reduction of steel liquid storage tank. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2014.07.009.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2014.07.009        http://www.zjujournals.com/eng/CN/Y2014/V48/I7/1202

1]COOPER T W. A study of the performance of petroleum storage tanks during earthquakes, 1933-1995 [R]. Gaithersburg: National Institute of Standards and Technology, 1997.
[2]EN1998-4. Design of structures for earthquake resistance Part 4: silos, tanks and pipelines [S]. Brussels: European Committee for Standardization(ECS), 2006.
[3]TAZUKE H, YAMAGUCHI S, ISHIDA K, et al. Seismic proving test of equipment and structures in thermal conventional power plant [J]. Journal of Pressure Vessel Technology, 2002, 124(2): 133-143.
[4]PEEK R, EL-BKAILY M. Postbuckling behavior of unanchored steel tanks under lateral loads [J]. Journal of Pressure Vessel Technology, 1991, 113(3): 423-428.
[5]ITO T, MORITA H, HAMADA K, et al. Investigation on buckling behavior of cylindrical liquid storage tanks under seismic excitation: 1st report-investigation on elephant foot bulge [C]∥ Proceedings of the ASME Pressure Vessels and Piping Conference. Cleveland: [s. n.], 2003: 193-201.
[6]CEC160:2004. 建筑工程抗震性态设计通则 [S]. 北京: 中国计划出版社, 2004.
[7]GB50011-2010. 建筑抗震设计规范 [S]. 北京: 中国建筑工业出版社, 2010.
[8]GB50341-2003. 立式圆筒形钢制焊接油罐设计规范 [S]. 北京: 中国计划出版社, 2003.
[9]SH/T3026-2005. 钢制常压立式筒形储罐抗震鉴定标准[S]. 北京: 中国石化出版社, 2005.
[10]API650. Welded steel tanks for oil storage [S]. Washington: American Petroleum Institute (API), 2008.
[11]BORZI B, ELNASHAI A S. Refined force reduction factors for seismic design [J]. Engineering Structures, 2000, 22(10): 1244-1260.
[12]杨宏康, 高博青. 基于动力推覆方法的储液罐抗震分析 [J]. 工程力学, 2013, 30(11): 153-159.
YANG Hong-kang, GAO Bo-qing. Seismic analysis of liquid storage tanks based on dynamic pushover method [J]. Engineering Mechanics, 2013, 30(11): 153-159.
[13]SHERMAN W C. Controversial issues in seismic design of liquid-containing structures [C]∥ Structures Congress 2008: Crossing Borders. Vancouver: ASCE, 2008.
[14]李扬,李自力,张艳. 中美欧储罐抗震规范中地震作用的比较研究 [J]. 世界地震工程, 2009(1): 122-130.
LI Yang, LI Zi-li, ZHANG Yan. Comparative study on seismic action between Chinese, American and European seismic design codes of liquid storage tanks [J]. World Earthquake Engineering, 2009(1): 122-130.
[15]MOSLEMI M, KIANOUSH M R. Parametric study on dynamic behavior of cylindrical ground-supported tanks [J]. Engineering Structures, 2012, 42: 214-230.
[16]徐志钧, 许朝铨, 沈珠江. 大型储罐基础设计与地基处理 [M]. 北京: 中国石化出版社, 1999: 710.
[17]翟长海, 谢礼立. 抗震结构最不利设计地震动研究 [J]. 土木工程学报, 2005, 38(12): 51-58.
ZHAI Chang-hai, XIE Li-li. The severest design ground motions for seismic design and analysis of structures [J]. China Civil Engineering Journal, 2005, 38(12): 51-58.
[18]WHITTAKER D, JURY D. Seismic design loads for storage tanks [C] ∥ 12th World Conference on Earthquake Engineering. New Zealand: [s. n.], 2000.

[1] 柯世堂,朱鹏. 基于大涡模拟增设气动措施冷却塔风荷载频域特性[J]. 浙江大学学报(工学版), 2016, 50(11): 2143-2149.
[2] 崔国勇, 崔昌禹, 涂桂刚. 自由曲面混凝土结构力学特性[J]. 浙江大学学报(工学版), 2015, 49(10): 1960-1966.
[3] 黄河, 关富玲, 唐渝思, 徐彦. 充气球天线材料性能试验与反射面型面分析[J]. 浙江大学学报(工学版), 2015, 49(4): 769-775.
[4] 杨宏康, 高博青. 基于Floquet理论的储液罐动力稳定性分析[J]. J4, 2013, 47(2): 378-384.
[5] 关富玲, 钱利锋. 新型陆基充气球天线力学分析与测试[J]. J4, 2012, 46(2): 257-262.
[6] 杨鸿, 杨代恒, 赵阳. 钢筒仓散料静态压力的三维有限元模拟[J]. J4, 2011, 45(8): 1423-1429.
[7] 徐彦, 关富玲, 川口健一. 充气薄膜结构的悬垂和充气展开过程[J]. J4, 2011, 45(1): 75-80.
[8] 鲍侃袁, 沈国辉, 孙炳楠. 双曲冷却塔的脉动风荷载模拟和风致响应[J]. J4, 2010, 44(5): 955-961.
[9] 肖潇, 关富玲, 徐彦. 卷曲折叠充气管展开过程的数值分析及实验研究[J]. J4, 2010, 44(1): 184-189.