Please wait a minute...
J4  2014, Vol. 48 Issue (3): 527-534    DOI: 10.3785/j.issn.1008-973X.2014.03.022
化学工程     
基于声信号的气固流化床塌落过程研究
韩笑,周业丰,黄正梁,顾玉彬,王靖岱,俞欢军,阳永荣
化学工程联合国家重点实验室,浙江大学 化学工程与生物工程学系,浙江 杭州 310027
Study on collapse process in gas-solid fluidized bed  based on acoustic signals
HAN Xiao, ZHOU Ye-feng, HUANG Zheng-liang, GU Yu-bin, WANG Jing-dai,
YU Huan-jun, YANG Yong-rong
State Key Laboratory of Chemical Engineering, Department of Chemical and Biochemical Engineering,
 Zhejiang University, Hangzhou 310027, China
 全文: PDF(2451 KB)   HTML
摘要:

使用声发射技术研究Geldart A/B/D类型颗粒的气固流化床塌落过程,根据声能量随时间变化曲线的特征,提出判别颗粒Geldart类型的判据,即A类颗粒的床层底部声能量曲线存在恒速下降的线性脱气段,而B、D类颗粒则不存在线性脱气段.进一步,结合Hilbert-Huang变换(HHT),分析塌落过程的声发射信号,获得塌落过程中声信号的边际谱,揭示了不同Geldart类型颗粒在塌落过程中的运动特性:A类颗粒与壁面间的碰撞比较强烈,而D类颗粒仅与壁面发生摩擦,B类颗粒介于A、D类颗粒之间.实验结果表明,结合HHT分析的声发射技术可用于气固流化床中流体力学的测定.

Abstract:

Acoustic emission (AE) technique was used to  study the collapse processes of Geldarts group A/B/D particles in a gas-solid fluidized bed. According to characteristics of the variation curves of acoustic energy, a criterion to distinguish the Geldarts group classification was presented. The variation curve of the acoustic energy at the bottom bed with time for Group A particles showed a linear degassing segment, but there was no linear degassing segment for Group B/D particles. Furthermore, based on Hilbert-Huang transform(HHT)analysis, the marginal spectrum of AE signals was obtained during the collapse processes and the particle motion behavior during collapse processes of Group A/B/D particles were revealed. Group A particles collide with the wall frequently  while there are only friction interaction for Group D particles, and the movement characteristic of Group B particles is between Group A particles and Group D particles. The experimental results show that the acoustic emission (AE) technique based on HHT analysis is feasible for determining hydrodynamics of gas-solid fluidized beds.

出版日期: 2018-06-10
:  TQ 021  
基金资助:

国家自然科学基金资助项目(21176207);国家“973”重点基础研究发展规划资助项目(2012CB720500);2011年度高等学校博士学科点专项科研基金资助项目(20110101120020);浙江省自然科学基金青年基金资助项目(LQ13B060002).

通讯作者: 黄正梁,男,助理研究员.     E-mail: huangzhengl@zju.edu.cn
作者简介: 韩笑(1988-),女,硕士生,主要从事气固流化床内流体力学的研究. E-mail: xiao@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

韩笑,周业丰,黄正梁,顾玉彬,王靖岱,俞欢军,阳永荣. 基于声信号的气固流化床塌落过程研究[J]. J4, 2014, 48(3): 527-534.

HAN Xiao, ZHOU Ye-feng, HUANG Zheng-liang, GU Yu-bin, WANG Jing-dai,. Study on collapse process in gas-solid fluidized bed  based on acoustic signals. J4, 2014, 48(3): 527-534.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2014.03.022        http://www.zjujournals.com/eng/CN/Y2014/V48/I3/527

[1] RIETEMA K. Application of mechanical stress theory to fluidization [C]∥Proceedings of the International Symposium on Fluidization. [S.l.]:[s.n.],1967: 157-175.
[2] DIEKMAN R, FORSYTHE W L. Laboratory prediction of flow properties of fluidized solids [J]. Industrial and Engineering Chemistry, 1953, 45(6): 1174-1177.
[3] YANG Z, TUNG Y, WAUK M. Characterizing fluidization by the bed collapsing method [J]. Chemical Engineering Communications, 1985, 39(1/6): 217232.
[4] 王长青,王垚,金涌,等. 平均粒径对气-固流态化特性的影响[J]. 化工学报,1999,50(3):367-372.
WANG Chang-qing, WANG Yao, JIN Yong, et al. Effect of particle average size on gas-solid fluidization properties [J]. Journal of Chemical Industry and Engineering, 1999, 50(3): 367-372.
[5] LETTIERI P, NEWTON D, YATES J G. High temperature effects on the dense phase properties of gas fluidized beds [J]. Powder Technology, 2001, 120: 34-40.
[6] BOYD J W R, VARLEY J. The uses of passive measurement of acoustic emissions from chemical engineering processes [J]. Chemical Engineering Science, 2001, 56(5): 1749-1767.
[7] VERVLOET D, NIJENHUIS J, VAN OMMEN J R. Monitoring a lab-scale fluidized bed dryer: A comparison between pressure transducers, passive acoustic emissions and vibration measurements [J]. Powder Technology, 2010, 197(1/2): 36-48.
[8] CODY G D, GOLDFARB D J, STORCH G V, et al. Particle granular temperature in gas fluidized beds [J]. Powder Technology, 1996, 87: 211-232.
[9] WANG J D, REN C J, YANG Y R. Characterization of flow regime transition and particle motion using acoustic emission measurement in a gas-solid fluidized bed [J]. AIChE Journal, 2010, 56(5): 1173-1183.
[10] 王靖岱,蒋斌波,阳永荣,等. 声波的多尺度解析与气固流化床故障检测[J]. 化工学报,2006,57(7):1565-1569.
WANG Jing-dai, JIANG Bin-bo, YANG Yong-rong, et al. Multi-scale analysis of acoustic emissions and malfunction diagnosis in gas-solid fluidized bed [J]. Journal of Chemical Industry and Engineering, 2006, 57(7): 1565-1569.
[11] 虞贤波,任聪静,姜晓静,等. 气固流化床中声发射和结块定位[J]. 浙江大学学报:工学版,2008,42(10):1828-1832.
YU Xian-bo, REN Cong-jing, JIANG Xiao-jing, et al. Acoustic emission and agglomeration location in gas-solid fluidized bed [J]. Journal of Zhejiang University:Engineering Science, 2008, 42(10): 1828-1832.
[12] HUANG N E, WU Z. A review on Hilbert-Huang transform: method and its applications to geophysical studies [J]. Reviews of Geophysics, 2008, 46 (2) : RG2006.
[13] PENG Z K, TSE P W, CHU F L. A comparison study of improved Hilbert-Huang transform and wavelet transform: Application to fault diagnosis for rolling bearing [J]. Mechanical Systems And Signal Processing, 2005, 19(5): 974-988.
[14] DATIG M, SCHLRUMANN T. Performance and limitations of the Hilbert-Huang transformation(HHT) with an application to irregular water waves [J]. Ocean Engineering, 2004, 31(14/15): 1783-1834.
[15] BRIONGOS J V, ARAGON J M, PALANCAR M C. Phase space structure and multi-resolution analysis of gas–solid fluidized bed hydrodynamics: Part I — The EMD approach [J]. Chemical Engineering Science, 2006, 61: 6963-6980.
[16] CHERNTONGCHAI P, INNAN T. Mathematical description of pressure drop profile for the 1-valve and 2-valve bed collapse experiment [J]. Chemical Engineering Science, 2011, 66: 973-981.

[1] 黄正梁,胡雨晨,王靖岱,阳永荣. 基于希尔伯特-黄变换测量搅拌釜临界分散转速[J]. J4, 2012, 46(9): 1685-1691.