Please wait a minute...
J4  2013, Vol. 47 Issue (7): 1205-1212    DOI: 10.3785/j.issn.1008-973X.2013.07.011
土木工程     
空间曲线蝶形拱桥顶推施工的多尺度模拟分析
牛辉,汪劲丰,张仪萍,张治成,俞亚南
浙江大学 建筑工程学院,浙江 杭州 310058  
Study of incremental launching of space-curved butterfly-arch bridge
NIU Hui, WANG Jin-feng, ZHANG Yi-ping, ZHANG Zhi-cheng, YU Ya-nan
College of Civil Engineering and Architecture,Zhejiang University,Hangzhou 310058,China
 全文: PDF  HTML
摘要:

采用实体退化单元精确描述构件几何特征,结合多尺度建模的思想建立杭州钱江八桥全桥精细有限元模型进行施工过程仿真分析.施工阶段仅考虑自重荷载,约束条件为多跨连续梁,最大顶推跨径为94 m.分析结果表明:最大拉应力约为307.2 MPa,最大压应力约为306.7 MPa,均位于前导梁箱型截面段与双工字钢截面段的交接处,在施工过程中主桥结构未出现应力过大情形;主、副拱肋应力及变形呈现空间变化特性,截面角点应力的变化规律具有一定的对称性;主、副拱连杆对结构的受力有明显影响;主梁最大应力为-280.4 MPa,施工中主梁未出现屈服现象.

Abstract:

The construction of Hangzhou 8th Bridge on Qiantang River was simulated by fine finite element model. The degenerated solid element and multi-scale modeling were adopted. The structure was restrained in boundary conditions of multi-span continuous beams. During construction, the largest launching span was 94 m, and self-weight was the only force considered. Simulation results showed that  the largest tension stress and compression stress, both occurred at the joint of the front nose and main beam of the southern span, were 307.2 MPa and 306.7 MPa, respectively. No overloading had happened. Stresses of main arch and subarch varied spatially and distributed symmetrically. The connecting rods significantly affected the structure stress. The main beam, stayed unyielding, bore a maximum compressive stress with the value of -280.4 MPa.

出版日期: 2013-07-01
:  TU 443.22  
基金资助:

国家自然科学基金资助项目(51108411);浙江省自然科学基金资助项目(Y1110181);重大工程结构安全防护与健康服役科技创新团队资助项目(2010R50034).

通讯作者: 汪劲丰,男,副教授.     E-mail: wangjinfeng@zju.edu.cn
作者简介: 牛辉(1983-),男,博士生,从事组合结构的研究. E-mail: niuhuinh@gmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

牛辉,汪劲丰,张仪萍,张治成,俞亚南. 空间曲线蝶形拱桥顶推施工的多尺度模拟分析[J]. J4, 2013, 47(7): 1205-1212.

NIU Hui, WANG Jin-feng, ZHANG Yi-ping, ZHANG Zhi-cheng, YU Ya-nan. Study of incremental launching of space-curved butterfly-arch bridge. J4, 2013, 47(7): 1205-1212.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2013.07.011        http://www.zjujournals.com/eng/CN/Y2013/V47/I7/1205

 [1] CHEN Bao-chun, WANG Ton-lo. Overiew of concrete filled steel tube arch bridges in China [J]. Practice Periodical on Structural Design and Construction, 2009, 14(2): 70-80.
[2] LU Peng-zhen, ZHANG Jun-ping, ZHAO Ren-da. Study on the mechanical performance of butterfly arch bridge [J]. The Structural Design of Tall and Special Buildings, 2009, 18(5): 469-483.
[3] SUN Yong, WANG Li-feng. Local stress analysis of the big intersection angle V-shaped pier of butterfly arch continuous girder bridge [C]∥10th ICCTP - Integrated Transportation Systems: Green, Intelligent, Reliable. Beijing: [s.n.], 2010: 3453-3462.
[4] SASMAL S, RAMANJANEYULU K, SRINIVAS V, et al. Simplified computational methodology for analysis and studies on behaviour of incrementally launched continuous bridges [J]. Structural Engineering and Mechanics, 2004, 17(2): 245-266.
[5] 徐兴,吴强,凌道盛. 16-20结点三维退化层合板壳单元[J]. 浙江大学学报:工学版, 2000, 34(1): 21-24.
XU Xing, WU Qiang, LING Dao-sheng, et al. 16-20 node three-dimensional degenerate laminated plate/ shell element [J]. Journal of Zhejiang University: Engineering Science, 2000, 34(1): 21-24.
[6] LING Dao-sheng, YANG Qing-da, COX Brian. An augmented finite element method for modeling arbitrary discontinuities in composite materials [J]. International Journal of Fracture, 2009, 156(1): 53-73.
[7] 乔华,陈伟球. 基于Arlequin方法的结构多尺度数值模拟[J]. 浙江大学学报:工学版,2010, 44(12): 2314-2319.
QIAO Hua, CHEN Wei-qiu. Multi-scale numerical simulation of structures based on Arlequin method [J]. Journal of Zhejiang University: Engineering Science, 2010, 44(12): 2314-2319.
[8] 王春苗,李兆霞,殷爱国. 大型土木结构多目标一致逼近有限元模拟方法[J]. 东南大学学报:自然科学版,2009, 39(1): 78-84.
WANG Chun-miao, LI Zhao-xia, YIN Ai-guo. Multi-objective concurrent approaching of simulating for civil infrastructure [J]. Journal of Southeast University: Natural Science Edition, 2009, 39(1): 78-84.
[9] 林旭川,陆新征,叶列平. 钢-混凝土混合框架结构多尺度分析及其建模方法[J]. 计算力学学报, 2010, 27(3): 469-475.
LIN Xu-chuan, LU Xin-zheng, YE Lie-ping. Multi-scale finite element modeling and its application in the analysis of a steel-concrete hybrid frame [J]. Chinese Journal of Computational Mechanics, 2010, 27(3): 469-475.
[10] LI Z X, ZHOU T Q, CHAN T H T, et al. Multi-scale numerical analysis on dynamic response and local damage in long-span bridges [J]. Engineering Structures, 2007, 29(7): 1507-1524.
[11] 牛辉,汪劲丰,张巍,等. 基于实体退化单元的高墩非线性稳定仿真分析[J]. 浙江大学学报:工学版, 2012, 46(6): 124-131.
NIU Hui, WANG Jin-feng, ZHANG Wei, et al. Nonlinear stability analysis of high pier based on degenerated solid element [J]. Journal of Zhejiang University: Engineering Science, 2012, 46(6): 124-131.

[1] 牛辉, 汪劲丰, 张巍, 俞亚南, 吴光宇. 基于实体退化单元的高墩非线性稳定仿真分析[J]. J4, 2012, 46(6): 1082-1089.