Please wait a minute...
J4  2012, Vol. 46 Issue (5): 899-904    DOI: 10.3785/j.issn.1008-973X.2012.05.020
计算机技术﹑电信技术     
偏置电场对THz辐射强度影响的蒙特卡罗模拟
徐英1,2, 洪治1
1. 中国计量学院 太赫兹技术与应用研究所, 浙江 杭州 310018; 2. 浙江大学 光及电磁波研究中心, 浙江 杭州 310058
Monte Carlo simulation of the effect of bias electric field on
intensity of THz radiation
XU Ying1, 2, HONG Zhi1
1. Center for Terahertz Research, China Jiliang University, Hangzhou 310018, China;
2. Center for Optical and Electromagnetic Research, Zhejiang University, Hangzhou 310058, China
 全文: PDF  HTML
摘要:

采用系综蒙特卡罗方法对光生载流子在偏置电场作用下的输运过程进行模拟,从微观角度研究偏置电场对连续太赫兹辐射强度的影响.模拟结果表明,由于空间电荷电场屏蔽效应以及散射等因素的影响,太赫兹辐射强度先是随偏置电场的增强而上升,当达到峰值后逐渐趋于饱和.虽然降低温度使粒子发生散射的几率降低,但同时也减小粒子的初始能量,故低偏置电场时低温下连续太赫兹辐射功率比常温下小,而当偏置电场超过某一阈值时,降低温度能够提高连续太赫兹辐射功率.

Abstract:

To study the effect of bias electric field on the intensity of continuous-wave (CW) terahertz (THz) radiation from the microscopic view, ensemble Monte Carlo method was used to simulate the carriers transport processes under bias electric field. The simulation results show that, due to the effects of space charge screening and scattering, the intensity of CW THz radiation firstly increases as the bias electric field increases, and then saturates finally after reaching peak value. Although the possibility of carrier scattering drops as temperature reduces, the initial energy of photoexcited carrier decreases, so the power of CW THz radiation is lower at low temperature than at normal temperature when the bias electric field is low, but becomes higher when the bias electric field is above a certain threshold.

出版日期: 2012-05-01
:  O 431.1  
基金资助:

国家自然科学基金资助项目(60977066).

通讯作者: 洪治, 男, 研究员.     E-mail: hongzhi@cjlu.edu.cn
作者简介: 徐英(1982-), 女, 博士生, 从事连续太赫兹产生及应用方向研究. E-mail: xuying@coer.zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

徐英, 洪治. 偏置电场对THz辐射强度影响的蒙特卡罗模拟[J]. J4, 2012, 46(5): 899-904.

XU Ying, HONG Zhi. Monte Carlo simulation of the effect of bias electric field on
intensity of THz radiation. J4, 2012, 46(5): 899-904.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2012.05.020        http://www.zjujournals.com/eng/CN/Y2012/V46/I5/899

[1] BAKOPOULOS P, KARANASIOU I, PLEROS N, et al. Avramopoulos: A tunable continuous wave (CW) and shortpulse optical source for THz brain imaging applications [J]. Measurement Science & Technology, 2009, 20(10): 104001.
[2] SHIBUYA K, TANI M, HANGYO M, et al. Compact and inexpensive continuouswave subterahertz imaging system with a fibercoupled multimode laser diode [J]. Applied Physics Letters, 2007, 90(16): 161127.
[3] WILK R, BREITFELD F, MIKULICS M, et al. Continuous wave terahertz spectrometer as a noncontact thickness measuring device [J]. Applied Optics, 2008, 47(16): 3023-3026.
[4] VERGHESE S, MCINTOSH K A, BROWN E R. Highly tunable fibercoupled photomixers with coherent terahertz output power [J]. IEEE Transactions on Microwave Theory and Techniques, 1997, 45(8): 1301-1309.
[5] BROWN E R, MCINTOSH K A, SMITH F W, et al. Milliwatt output levels and superquadratic bias dependence in a lowtemperaturegrown GaAs photomixer [J]. Applied Physics Letters, 1994, 64(24): 3311-3313.
[6] MICHAEL E A, VOWINKEL B, SCHIEDER R, et al. Largearea travelingwave photonic mixers for increased continuous terahertz power [J]. Applied Physics Letters, 2005, 86(11): 111-120.
[7] VERGHESE S, MCINTOSH K A, BROWN E R. Optical and terahertz power limits in the lowtemperaturegrown GaAs photomixers [J]. Applied Physics Letters, 1997, 71(19): 2743-2745.
[8] VIEWEG N, MIKULICS M, SCHELLER M, et al. Impact of the contact metallization on the performance of photoconductive THz antennas [J]. Optics Express, 2008, 16(24): 19695-19705.
[9] SAEEDKIA D, MANSOUR R R, SAFAVINAEINI S. The interaction of laser and photoconductor in a continuouswave terahertz photomixer [J]. IEEE Journal of Quantum Electronics, 2005, 41(9): 1188-1196.
[10] BROWN E R. THz generation by photomixing in ultrafast photoconductors [J]. International Journal of High Speed Electronics and Systems, 2003, 13(2): 497-594.
[11] 叶良修. 小尺寸半导体器件的MonteCarlo模拟 [M]. 北京: 科学出版社, 1997.
[12] VARANI L, PALERMO C, MILLITHALER J F, et al. Numerical modeling of terahertz electronic devices [J]. Journal of Computational Electronics, 2006, 5(2): 71-77.
[13] LIU D F, LIN Y X, MA C H. Influence of electronelectron scattering on carrier distributions in optically pumped terahertz laser structures under short pulse excitation [J]. Semiconductor Science and Technology, 2009, 24(4): 045019.
[14] LI H, CAO J C, LU J T, et al. Monte Carlo simulation of extraction barrier width effects on terahertz quantum cascade lasers [J]. Applied Physics Letters, 2008, 92(22): 221105.
[15] 贾婉丽, 施卫, 屈光辉,等. GaAs 光电导天线辐射太赫兹波功率的计算[J]. 物理学报, 2008, 57(9):5425-5428.
JIA Wanli, SHI Wei, QU Guanghui,et al. The calculation of terahertz wave power radiated GaAs photoconductive antenna \
[J\]. Acta Physica Sinica,2008,57(9):5425-5428.
[16] DARROW J T, ZHANG X C, MORSE J D. Saturation properties of largeaperture photoconducting antennas [J]. IEEE Journal of Quantum Electronics, 1992, 28(6): 1607-1618.
[17] NEILA G R, CARRB G L, GUBELI III J F, et al. Production of high power femtosecond terahertz radiation [J]. Nuclear Instruments and Methods in Physics Research A, 2003, 507: 537-540.
[18] BLAKEMORE J S. Semiconducting and other major properties of galliumarsenide [J]. Journal of Applied Physics, 1982, 53(10): R123-R181.

No related articles found!