Please wait a minute...
J4  2011, Vol. 45 Issue (12): 2150-2158    DOI: 10.3785/j.issn.1008-973X.2011.12.013
土木工程、水利工程     
平面强化有限单元法的h型网格自适应
凌道盛, 卜令方, 黄根清, 黄博
浙江大学 软弱土与环境土工教育部重点实验室,岩土工程研究所,浙江 杭州 310058
h-adaptive enhanced finite element method for plane problems
LING Dao-sheng, BU Ling-fang, HUANG Gen-qing, HUANG Bo
MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Institute of Geotechnial Engineering,
Zhejiang University, Hangzhou 310058, China
 全文: PDF  HTML
摘要:

自适应有限元中的单元细划会不可避免地引入非规则节点,针对非规则节点的多点约束处理方法存在自由度多、数值稳定性差等缺点,根据强化有限单元法(FEM++)中数学网格和物理网格分离的特点,构造一种能够统一处理任意阶非规则节点的位移模式关联法则——物理模式重构法,并导出相应的有限元列式.修正了常规有限元中的超收敛应力恢复法和ZZ(Zienkiwicz-Zhu)后验误差估计理论,提出强化有限单元法的后验误差估计方法及相应的h型网格自适应策略.物理模式重构法在单元层次上直接将非规则节点的位移用具有独立自由度的数学节点位移线性表达,既保证了单元间的位移连续性,又不需要约束处理的多余自由度,保证了数值稳定性.数值算例表明:强化有限单元法的后验误差估计方法及自适应策略能给出满足精度要求的网格.

Abstract:

The multipoint constraint method, which is currently applied to deal with the hanging node introduced by the h-refinement in standard finite element method, requires more degrees of freedom (DOFs) and degrades the numerical stability, therefore, a convenient method to treat the hanging node was presented in the framework of the enhanced finite element method (FEM++). According to separated mathematical and physical meshes, a new correlation rule for FEM++, namely reconstruction of physical displacement mode, was proposed to handle the hanging node with any irregularity index in a uniform way, and the corresponding finite element formulas were then derived. The superconvergent patch recovery and ZZ (Zienkiwicz-Zhu) error estimate method were improved, and the a posteriori error estimate method and corresponding h-refinement strategy suitable for FEM++ were then put forward. The DOFs of the hanging node can be represented by the independent DOFs of the mathematical nodes using reconstruction of physical displacement mode, so no extra DOF is needed, and the displacement continuity between the elements and the numerical stability can both be guaranteed. Numerical examples demonstrate that, meshes that satisfying an aim error can be obtained by the a posteriori error estimate method and the h-refinement strategy proposed here.

出版日期: 2011-12-01
:  O 343.1  
基金资助:

高等学校博士学科点专项科研基金资助项目(2010010110027);浙江省重点创新团队支持计划资助项目(2009R50050).

作者简介: 凌道盛(1968—),男,教授,博导,从事计算力学与基础工程研究.E-mail:dsling@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

凌道盛, 卜令方, 黄根清, 黄博. 平面强化有限单元法的h型网格自适应[J]. J4, 2011, 45(12): 2150-2158.

LING Dao-sheng, BU Ling-fang, HUANG Gen-qing, HUANG Bo. h-adaptive enhanced finite element method for plane problems. J4, 2011, 45(12): 2150-2158.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2011.12.013        https://www.zjujournals.com/eng/CN/Y2011/V45/I12/2150

[1] BELYTSCHKO T, BLACK T. Elastic crack growth in finite elements with minimal remeshing[J]. International Journal for Numerical Methods in Engineering, 1999, 45(5): 601-620.
[2] MOES N, DOLLOW J, BELYTSCHKO T. A finite element method for crack growth without remeshing[J]. International Journal for Numerical Methods in Engineering, 1999, 46(1): 131-150.
[3] 凌道盛,徐小敏,陈云敏.数学网格和物理网格分离的有限单元法(I):基本理论[J].计算力学学报,2009,26(3):401-407.
LING Daosheng, XU Xiaomin, CHEN Yunmin. An enhanced finite element method with separate mathematical and physical mesh(I): theory[J]. Chinese Journal of Computational Mechanics, 2009,26(3): 401-407.
[4] DUGDALE D S. Yielding of steel sheets containing slits[J]. Journal of the Mechanics and Physics of Solids, 1960, 8(2): 100-108.
[5] BARENBLATT G I.The mathematical theory of equilibrium cracks in brittle fracture[J]. Advances in Applied Mechanics, 1962,7: 55-129.
[6] 凌道盛,韩超,陈云敏.数学网格和物理网格分离的有限单元法(II):粘聚裂纹扩展问题中的应用[J].计算力学学报,2009,26(3): 408-414.
LING Daosheng, HAN Chao, CHEN Yunmin. An enhanced finite element method with separate mathematical and physical mesh(II): application in propagation of cohesive crack[J]. Chinese Journal of Computational Mechanics, 2009, 26(3): 408-414.
[7] LING D S, YANG Q D, COX B N. An augmented finite element method for modeling arbitrary discontinuities in composite materials[J]. International Journal of Fracture, 2009, 156(1): 53-73.
[8] LING D S, FANG X J, COX B N, et al. Nonlinear fracture analysis of delamination crack jumps in laminated composites[J].Journal of Aerospace Engineering, 2011, 24(2): 181-188.
[9] 杨庆生,杨卫.断裂过程的有限元模拟[J].计算力学学报,1997,14(4): 407-412.
YANG Qingsheng, YANG Wei. Finite element simulation of fracture process[J]. Chinese Journal of Computational Mechanics, 1997,14(4): 407-412.
[10] 王建华,杨磊,沈为平.自适应分析在确定裂纹尖端塑性区中的应用[J].计算力学学报,2001,18(1): 111-117.
WANG Jianhua, YANG Lei, SHEN Weiping. Determination of the shape of plastic zone near crack tip by adaptive FEA[J]. Chinese Journal of Computational Mechanics, 2001, 18(1): 111-117.
[11] 黄茂松,贾苍琴,钱建固.岩土材料应变局部化的有限元分析方法[J].计算力学学报,2007,24(7): 465-471.
HUANG Maosong, JIA Cangqin, QIAN Jiangu. Strain localization problems in geomaterials using finite elements[J]. Chinese Journal of Computational Mechanics, 2007, 24(7): 465-471.
[12] PANNACHET T, SLUYS L J, ASKES H. Error estimation and adaptivity for discontinuous failure[J]. International Journal for Numerical Methods in Engineering, 2009, 78(5): 528-563.
[13] GUTIERREZ M A, BORST R, SCHELLEKENS J C J, et al. An algorithm for mesh rezoning with applications to strain localization problems[J]. Computers & Structures, 1995, 55(2): 237-247.
[14] PALANI G S, IYER N R, DATTAGURU B. New a posteriori error estimator and adaptive mesh refinement strategy for 2D crack problems[J]. Engineering Fracture Mechanics, 2006, 73(6): 802-819.
[15] SOUIYAH M, ALSHOAIBI A, MUCHTAR A, et al. Twodimensional finite element method for stress intensity factor using adaptive mesh strategy[J]. Acta Mechanica, 2009, 204(1/2): 99-108.
[16] KHOEI A R, MOSLEMI H, ARDAKANY K M, et al. Modeling of cohesive crack growth using an adaptive mesh refinement via the modifiedSPR technique[J]. International Journal of Fracture, 2009, 159(1): 21-41.
[17] ZIENKIEWICZ O C, ZHU J Z. The superconvergence path recovery and a posteriori error estimates. Part 1: The recovery technique[J]. International Journal for Numerical Methods in Engineering, 1992, 33(7): 1331-1364.
[18] ZIENKIEWICZ O C, ZHU J Z. The superconvergence path recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity[J]. International Journal for Numerical Methods in Engineering, 1992, 33(7): 1365-1382.
[19] BARLOW J. Optimal stress location in finite element method[J]. International Journal for Numerical Methods in Engineering, 1976,10(2): 243-251.

No related articles found!