Please wait a minute...
J4  2011, Vol. 45 Issue (10): 1804-1808    DOI: 10.3785/j.issn.1008-973X.2011.10.018
能源与机械工程     
溴化锂储热储冷系统
夏巧民, 胡亚才
浙江大学 能源工程学系,浙江 杭州 310029
Lithium bromide heat and cold storage system
XIA Qiao-min, HU Ya-cai
Department of Energy Engineering, Zhejiang University, Hangzhou 310029, China
 全文: PDF  HTML
摘要:

为了促进工业中低温余热的利用,设计一种新型的余热回收利用装置——溴化锂储热储冷系统.该系统结构简单,余热利用率高,可以对60 ℃左右的低温工业余热进行收集并加以储存,储存的潜能可以转化成热能,或者在转化成热能的同时产生冷能,这是传统的蓄能技术所不具备的.通过计算分析输出温度、热源温度、溶液质量分数及冷却水温度对系统热效率的影响.结果表明,随着输出温度和冷却水温度的升高,系统热效率下降,而提高热源温度和发生器溶液最终质量分数可以提高系统的热效率.

Abstract:

A new equipment for industrial waste heat storage—the lithium bromide heat and cold storage system was designed in order to improve the utilization of middlelow temperature waste heat. The structure of the system is simple, and the system has high utilization rate of waste heat that can recycle low temperature industrial waste heat of about 60 ℃. Storaged potential energy can converse to heat and cold meanwhile, which the traditional thermal storage technology cannot reach. Thermodynamic calculation in different operating conditions was conducted to find the characteristics of thermal efficiency. How the output temperature, the heat source temperature, the final solution mass fraction and the cooling water temperature affect the thermal efficiency was analyzed. Results demonstrate that the thermal efficiency decreases with the output temperature and the cooling water temperature increasing, while the system thermal efficiency increases with heat source temperature and the final solution mass fraction increasing.

出版日期: 2011-10-01
:  TK 02  
基金资助:

国家“863”高技术研究发展计划资助项目(2007AA05Z254).

通讯作者: 胡亚才,男,博导,教授.     E-mail: huyacai@zju.edu.cn
作者简介: 夏巧民(1986— ), 男, 硕士生, 从事双效塑料溴化锂制冷机研究. E-mail: xqm1986@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

夏巧民, 胡亚才. 溴化锂储热储冷系统[J]. J4, 2011, 45(10): 1804-1808.

XIA Qiao-min, HU Ya-cai. Lithium bromide heat and cold storage system. J4, 2011, 45(10): 1804-1808.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2011.10.018        https://www.zjujournals.com/eng/CN/Y2011/V45/I10/1804

[1] 赵钦新,王宇峰,王学斌,等.我国余热利用现状与技术进展[J].工业锅炉,2009(5): 8-15.
ZHAO Qinxin,WANG Yufeng,WANG Xuebin,et al. Technical advance and status of China’s waste heat utilization [J]. Industrial Boiler, 2009(5): 8-15.
[2] 徐士鸣,张莉,李革,等.以水溴化锂溶液为工质的制冷/制热潜能储存系统特性研究[J].大连理工大学学报,2005,45(2): 194-200.
XU Shiming, ZHANG Li, LI Ge,et al. Research on characteristics of refrigeratin/heating potential storage system using H2OLiBr as working fluid [J]. Journal of Dalian University of Technology, 2005,45(2): 194-200.
[3] LI Z F, SUMATHY K. Performance of chiller in a solar absorption air conditioning system with partitioned hot water storage tank [J]. Journal of Solar Energy Engineering, 2001,123: 48-49.
[4] SHERIDAN N R, KANSHIK S C. A novel latent heat storage for solar space heating systems: refrigerant storage [J]. Applied Energy, 1981, 9(3): 165-172.
[5] 戴永庆.溴化锂吸收式制冷技术及应用[M].北京:机械工业出版社,1996: 13-163.
[6] 陈光明,冯仰浦,王剑锋.一个用太阳能驱动的新型吸收制冷循环[J].低温工程,1999(1): 50-54.
CHEN Guangming, FENG Yangpu, WANG Jianfeng. Study on a new absorption refrigeration cycle using solar energy [J]. Cryogenics, 1999(1): 50-54.
[7] 吴嘉峰,陈亚平,施明恒.太阳能溴化锂吸收式制冷循环的改进[J].工程热物理学报,2007, 28(1): 21-23.
WU Jiafeng, CHEN Yaping, SHI Mingheng. Promotion of compressor assisted LiBr absorption chilling cycle driven by solar energy [J]. Journal of Engineering Thermophysics, 2007, 28(1): 21-23.
[8] GRASSIE S L, SHERIDAN N R. Modeling of a solarpowered absorption airconditioning system with refrigerant storage [J]. Solar Energy, 1977, 19: 691-700.
[9] 尹洪超,靳兵,赵亮.溴化锂水溶液的结晶控制及应用对策[J].能源技术,2008, 29(1): 45-47.
YIN Hongchao, JIN Bing,ZHAO Liang. The crystallization of LiBr absorption system and control strategies [J]. Energy Technology, 2008, 29(1): 45-47.

No related articles found!