Please wait a minute...
J4  2011, Vol. 45 Issue (3): 419-423    DOI: 10.3785/j.issn.1008-973X.2011.03.003
无线电电子学、计算机技术     
基于中心频率检测的应答机载波捕获技术
张朝杰,金小军,姜建文,金仲和
浙江大学 信息与电子工程学系,浙江 杭州 310027
Transponder carrier acquisition technique based on
 center frequency detection
ZHANG Chao-jie, JIN Xiao-jun, JIANG Jian-wen, JIN Zhong-he
Department of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
 全文: PDF  HTML
摘要:

针对基于理想型积分环路滤波器的二阶锁相环在无信号输入时,环路中心频率会随热噪声发生漂移的问题,研究了卫星星载测控应答机的载波捕获技术.为解决无信号输入下的环路中心频率漂移问题,在基于正交欠采样技术及全数字载波恢复环的接收机结构基础上,通过一级中心频率检测器控制环路.当检测到上行信号时闭合环路,避免了接收机中心频率在无信号输入时随热噪声发生漂移.给出了中心频率检测器的设计方法,分析了检测器漏检概率和误判概率之间的关系,并在此基础上给出了检测器的具体参数选择依据.

Abstract:

In the condition of second order phase locked loop using perfect integrator loop filter, the loop center frequency drifts in response to thermal noise when no useful input signal presents. To avoid the problem of loop center frequency drift, the satellite on board transponder‘s carrier acquisition technique was studied. On the basis of all digital carrier recovery loop receiver architecture using I/Q sub-sampling technique, a center frequency detector was used to control the loop. This architectural solution allows to close the carrier recovery loop only when the uplink carrier signal is detected by the center frequency detector, thus avoiding the drift of center frequency in response to thermal noise at the receiver input. The design method of center frequency detector was given, and the relationship between the probability of missed detection and the probability of false alarm was analyzed. The detector parameter selection was given based on the result of analysis.

出版日期: 2012-03-16
:  TN 927  
基金资助:

国家自然科学基金资助项目(60904090);教育部新世纪优秀人才支持计划资助项目(NCET060514);中国博士后科学基金特别资助项目(20081458).

通讯作者: 金小军,男,副教授.     E-mail: axemaster@zju.edu.cn
作者简介: 张朝杰(1982-),男,浙江奉化人,博士后,从事微小卫星及其信号处理方面的研究. E-mail: zhangcj@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

张朝杰,金小军,姜建文,金仲和. 基于中心频率检测的应答机载波捕获技术[J]. J4, 2011, 45(3): 419-423.

ZHANG Chao-jie, JIN Xiao-jun, JIANG Jian-wen, JIN Zhong-he. Transponder carrier acquisition technique based on
 center frequency detection. J4, 2011, 45(3): 419-423.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2011.03.003        http://www.zjujournals.com/eng/CN/Y2011/V45/I3/419

[1] 詹亚锋, 马正新, 曹志刚. 现代微小卫星技术及发展趋势[J]. 电子学报, 2000, 28(7): 102-106.
ZHAN Yafeng, MA Zhengxin, CAO Zhigang. Technol ogy of modern micro satellite and its development direction [J]. Journal of Electronics, 2000, 28(7): 102-106.
[2] BERNER J B, KAYALAR S, PERRET J. The NASA spacecraft transponding modem [C] ∥ IEEE Aerospace Conference. Big Sky: IEEE, 2000:195-209.
[3] SIMONE L, COMPARINI M C. X/X/Ka transponder for deep space missions: architectural design and bread boarding at ALENIA SPAZIO [C] ∥ IEEE Aerospace Conference. Big Sky: IEEE, 2003: 1475-1485.

[4] CCSDS SECRETARIAT. RF and Modulation Systems, CCSDS 401.0-B [C] ∥ CCSDS Meeting. Washington, DC: CCSDS, 2006.
[5] BERNER J B, LAYLAND M J, KINMAN P W. Flexible loop filter design for spacecraft phaselocked receivers[J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(3): 957-964.
[6] YUEN J H. Deep space telecommunications systems engineering [M]. New York: Plenum Press, 1983.
[7] YEE D G. A Design methodology for highlyintegrated lowpower receivers for wireless communications [D]. Berkeley: University of California, 2001.
[8] TAVARES G, PIEDADE M S. High Performance algorithms for digital signal processing AGC [C] ∥ IEEE International Symposium on Circuits and Systems. New Orleans: IEEE, 1990:1529-1532.
[9] LUDEMAN L C. Random process: filtering, estimation and detection [M]. New Jersey: Wiley, 2003.

[1] 张朝杰, 金小军, 杨伟君, 金仲和. 高灵敏度微小卫星可变带宽接收机设计[J]. J4, 2011, 45(4): 660-664.