Please wait a minute...
J4  2010, Vol. 44 Issue (3): 612-618    DOI: 10.3785/j.issn.1008-973X.2010.03.035
环境工程、食品工程     
CO在H2/Cl2/O2/N2混合气体中氧化的动力学模拟
王波, 池涌, 严建华, 倪明江
浙江大学 能源清洁利用国家重点实验室,浙江 杭州310027
Kinetic modeling of CO oxidation in H2/Cl2/O2/N2 mixture
WANG Bo, CHI Yong, YAN Jianhua, NI Mingjiang
 全文: PDF  HTML
摘要:

利用详细的化学反应动力学模型研究了CO在H2/Cl2/O2/N2混合气体中的氧化反应,考查了混合气体中氯和氢的量之比、反应温度、停留时间和氧浓度等参数对CO氧化的影响,并用敏感性分性方法研究了不同条件下氯对CO氧化的抑制机理.结果表明,减小混合气体中氯和氢的量之比或提高反应温度是促进CO氧化的主要方法.在800 ℃以下氯对CO氧化的抑制作用主要表现为Cl+HO2HCl+O2,进而减少了通过H+HO2OH+OH生成的OH.在900 ℃以上,氯的抑制作用主要通过反应HCl+OHH2O+Cl减小OH的浓度,同时Cl+COClCO等的反应也减缓了CO2的生成速率;通过反应HCl+OOH+Cl,减轻了氯对CO氧化的抑制作用.

Abstract:

 A detailed kinetic model for CO oxidation in H2/Cl2/O2/N2 mixture was developed to investigate the dependance of CO conversion on various parameters such as chlorine to hydrogen mole ratio, reaction temperature, residence time and excess air. The inhibition mechanism of chlorine at different conditions was also discussed with sensitivity analysis. The results show that the most effective method to promote CO oxidation is to decreasing the mole ratio of chlorine to hydrogen or increasing the reaction temperature. At a temperature under 800 ℃, chlorine inhibits the cooxidation process mostly through Cl+HO2HCl+O2, which decreases the OH formation through H+HO2OH+OH. When the temperature exceeds 900 ℃, chlorine inhibits the cooxidation process through HCl+OHH2O+Cl, which decreases the OH concentration, while the reaction Cl+COClCO decreases the CO2 formation rate as well. The inhibition effect is partly overcome through the reaction HCl+OOH+Cl.

出版日期: 2012-03-20
:  O 657.75  
通讯作者: 池涌,男,教授.     E-mail: chiyong@zju.edu.cn
作者简介: 王波(1981—),男,四川珙县人,博士生,从事有机废液热处置技术研究, Email: zjuhero@sina.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

王波, 池涌, 严建华, 倪明江. CO在H2/Cl2/O2/N2混合气体中氧化的动力学模拟[J]. J4, 2010, 44(3): 612-618.

WANG Bei, CHE Chong, YAN Jian-Hua, NI Meng-Jiang. Kinetic modeling of CO oxidation in H2/Cl2/O2/N2 mixture. J4, 2010, 44(3): 612-618.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2010.03.035        http://www.zjujournals.com/eng/CN/Y2010/V44/I3/612

[1] [1]CHANG D P Y, SORBO N W, LAW C K, et al. Relationships between laboratory and pilotscale combustion of some chlorinated hydrocarbons [J]. Environmental Progress, 1989, 8(3): 152162.
[2]STRY W J, FELSKE J D, ASHGRIZ N. Droplet combustion of chlorinated benzenes, alkanes and their mixtures in a dry atmosphere [J]. Environmental Engineering Science, 2003, 20(2): 125133.
[3]WANG H, SUNG C J, LAW C K. On mild and vigorous oxidation of mixtures of chlorinated hydrocarbons in droplet burning [J]. Combustion and Flame, 1997, 110(12): 222238.
[4]BOSE D, SENKAN S M. On the combustion of chlorinated hydrocarbons [J]. Combustion Science and Technology, 1983, 35(14): 187202.
[5]ROESLER J R, YETTER R A, DRYER F L. Detailed kinetic modeling of moist CO oxidation inhibited by trace quantities of HCl [J]. Combustion Science and Technology, 1992,85(16): 122.
\
[6\] MUELLER M A, KIM T J, YETTER R A, et al. Flow reactor studies and kinetic modeling of the H2/O2 reaction \
[J\]. International Journal of Chemical Kinetics, 1999, 31(2): 113125.
\
[7\] WANG H, SUNG C J, LAW C K. On mild and vigorous oxidation of mixtures of chlorinated hydrocarbons in droplet burning \
[J\]. Combustion and Flame, 1997, 110(12): 222238.
\
[8\] BAULCH D L, COBOS C J, COX R A. Evaluated kinetic data for combustion modeling \
[J\]. Journal of Physical and Chemical Reference Data, 1992, 21(3): 411734.
\
[9\] BAULCH D L, COBOS C J, COX R A. Evaluated kinetic data for combustion modeling. Supplemental \
[J\]. Journal of Physical and Chemical Reference Data, 1994, 23(6): 8471033.
\
[10\] FRIEDRICHS G, HERBON J T, DAVIDSON D F, et al.  Quantitative detection of HCO behind shock waves: The thermal decomposition of HCO \
[J\]. Physical Chemistry Chemical Physics, 2002, 4(23): 57785788.
\
[11\] LEYLEGIAN J C, SUN H Y, LAW C K. Laminar flame speeds and kinetic modeling of hydrogen/ chlorine combustion \
[J\]. Combustion and Flame, 2005, 143 (3): 199210.
\
[12\] MIELKE S L, ALLISON T C, TRUHLAR D G, et al. Quantum mechanical rate coefficients for the Cl+H2 reaction \
[J\]. Journal of Physical Chemistry, 1996, 100(32): 1358813593.
\
[13\] STECKLER R, THURMAN G M, WATTS J D, et al. Ab initio direct dynamics study of OH+HCl → Cl+H2O \
[J\], Journal of Chemical Physics, 1997, 106(10): 39263933.
\
[14\] XIE T, BOWMAN J M, PETERSON K A, et al. Quantum calculations of the rate constant for the O(3P) plus HCl reaction on new ab initio 3A″ and 3A′ surfaces \
[J\]. Journal of Chemical Physics, 2003, 119(18): 96019608.
\
[15\] HOW P, BRAT R B, BOZZELLI J W. Thermal reaction of CH2Cl2 in H2O/O2 mixtures: implications for chlorine inhibition of co conversion to CO2 \
[J\]. Combustion and Flame, 1992, 88(34): 265295.

No related articles found!