Please wait a minute...
J4  2010, Vol. 44 Issue (3): 505-509    DOI: 10.3785/j.issn.1008-973X.2010.03.017
能源工程与动力工程     
滑动弧放电等离子体重整甲烷制取合成气钟犁
 严建华, 薄拯, 李晓东, 岑可法
浙江大学 能源清洁利用国家重点实验室,热能工程研究所,浙江 杭州 310027
Gliding arc discharge plasma assisted reforming of methane into synthesis gas
ZHONG Li, YAN Jianhua, BO Zheng, LI Xiaodong, CEN Kefa
State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, China
 全文: PDF  HTML
摘要:

 考察了在常温常压条件下利用滑动弧放电等离子体,使CH4与CO2重整制取合成气的效果,分析了供给电压、原料流速、预热温度等参数对转化率、选择性和制氢能耗的影响.结果表明,滑动弧放电可突破常温时热力学平衡的限制,有效促进重整反应的进行.与其他等离子方法相比,滑动弧放电的能量效率显著提高.增大电压或预热温度,可提高氢气选择性,促进氢气生成;增加流量,能量效率随之提高,但流量过大时,氢气选择性显著下降.当CH4与CO2的量比为1∶1、供给电压为8 640 V、喷嘴流速为130 m/s、预热温度为400 K时,制氢综合能耗最低,为103.1 kJ/L,此时单位氢气电耗为18.6 kJ/L,转化能力为6.37 mmol/kJ.

Abstract:

In ambient temperature and pressure, CO2 reforming of methane to produce synthesis gas by gliding arc discharge was investigated. The effects of supply voltage, total flow rate and preheating temperature on conversion, selectivity and hydrogen production energy cost were studied. The results show that gliding arc discharge can accelerate this reaction efficiently, even break through thermodynamic equilibrium restriction at ambient temperature. Compared to other plasma technologies, the energy efficiency of gliding arc discharge is obviously improved, and increases by enhancing flow rate. Hydrogen selectivity increases by enhancing supply voltage or preheating temperature. And when the total flow rate is large, the hydrogen selectivity will decrease significantly. When substance ratio of CH4 to CO2 is 1∶1, when the discharge voltage is 8 640 V, the flow rate through nozzle is 130 m/s, the preheating temperature is 400 K, then the total cost of this reaction is lowest with the value of 103.1 kJ/L, and the electrical cost is 18.6 kJ/L, the conversion ability is 6.37 mmol/kJ.

出版日期: 2012-03-20
:  TE646  
通讯作者: 严建华,男,教授,博导.     E-mail: yanjh@cmee.zju.edu.cn
作者简介: 钟犁(1985—),男,江西景德镇人,硕士生,从事等离子体应用领域的科研工作.E-mail:nonarmy@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

严建华, 薄拯, 李晓东, 岑可法. 滑动弧放电等离子体重整甲烷制取合成气钟犁[J]. J4, 2010, 44(3): 505-509.

Yan-Jian-Hua, BAO Zheng, LI Xiao-Dong, CEN Ge-Fa. Gliding arc discharge plasma assisted reforming of methane into synthesis gas. J4, 2010, 44(3): 505-509.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2010.03.017        http://www.zjujournals.com/eng/CN/Y2010/V44/I3/505

1] 陈俊武. 燃料能源的相互转化及其利用效率(上)[J]. 石油规划设计,2001,12(1): 36.
CHEN Junwu. The mutual conversion of fuel energy and their utilization efficiency[J]. Petroleum Planning & Engineering (Chinese), 2001,12(1): 36.
[2] 贺黎明,沈召军.甲烷的转化和利用[M].北京:化学工业出版社,2005.
[3] 张军旗,杨永进,张劲松,等.常压、脉冲微波强化丝光等离子体作用下甲烷与二氧化碳的反应研究[J].化学学报,2002,60(11): 19731980
ZHANG Junqi, YANG Yongjin, ZHANG Jinsong, et al. Study on the conversion of CH4 and CO2 using a pulsed microwave plasma under atmospheric pressure[J]. Acta Chemica Sinica, 2002,60(11): 19731980
[4] 齐凤伟,陶旭梅,李洁,等.热等离子体和催化剂协同作用重整甲烷和二氧化碳制备合成气[J].天然气化工,2007,32(5): 3235
QI Fengwei, TAO Xumei, LI Jie, et al. The reforming of CO2 and CH4 to syngas by plasma jet cooperating with catalysts[J]. Natural Gas Chemical Industry, 2007,32(5): 3235
[5] FRIDMAN A, NESTER S, LAWRENCE A, et al. Gliding arc gas discharge [J]. Progress in Energy and Combustion,1999,25(2): 211231.
[6] CZENICHOVSKI A. Gliding arc applications to engineering and environment control[J]. Pure & Appl Chemistry, 1994,66(6): 13011310.
[7] BENSTAALI B, MOUSSA D, ADDOU A, et al. Plasma treatment of aqueous solutes: some chemical properties of a gliding arc in humid air[J]. The European Physical Journal Applied Physics, 1998,4(2): 171179.
[8] 杜长明.滑动弧放电等离子体降解气相及液相中有机污染物的研究[D].杭州:浙江大学,2006.
DU Changming. Degradation of organic contaminations from gas and liquid phase using gliding arc discharge plasma[D]. Hangzhou: Zhejiang University,2006.
[9] LEE D H, KIM K T, CHA M S, et al. Optimization scheme of a rotating gliding arc reactor for partial oxidation of methane[J]. Proceeding of the Combustion Institute, 2007,31(2): 33433351.
[10] MUTAFYARDIMCI O. Plasma catalysis in hydrocarbon processing by using nonequilibrium plasma discharges[D]. Chicago: University of Illinois, 2001.
[11] DALAINE V, CORMIER J, PELLERIN S. Study and modeling of a 50 Hz gliding discharge[J]. Optimization of Electrical and Electronic Equipment, 1998,1: 161166.
[12] KADO S, URASAKI K, SEKINE Y, et al. Reaction mechanism of methane activation using nonequilibrium pulsed discharge at room temperature[J]. Fuel, 2003,82(18): 22912297.

No related articles found!